scholarly journals Comparison and Evaluation of Different Pit-Filling Methods for Generating High Resolution Canopy Height Model Using UAV Laser Scanning Data

2021 ◽  
Vol 13 (12) ◽  
pp. 2239
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Yuanshuo Hao ◽  
Bin Wang

As a common form of light detection and ranging (LiDAR) in forestry applications, the canopy height model (CHM) provides the elevation distribution of aboveground vegetation. A CHM is traditionally generated by interpolating all the first LiDAR echoes. However, the first echo cannot accurately represent the canopy surface, and the resulting large amount of noise (data pits) also reduce the CHM quality. Although previous studies concentrate on many pit-filling methods, the applicability of these methods in high-resolution unmanned aerial vehicle laser scanning (UAVLS)-derived CHMs has not been revealed. This study selected eight widely used, recently developed, representative pit-filling methods, namely first-echo interpolation, smooth filtering (mean, medium and Gaussian), highest point interpolation, pit-free algorithm, spike-free algorithm and graph-based progressive morphological filtering (GPMF). A comprehensive evaluation framework was implemented, including a quantitative evaluation using simulation data and an additional application evaluation using UAVLS data. The results indicated that the spike-free algorithm and GPMF had excellent visual performances and were closest to the real canopy surface (root mean square error (RMSE) of simulated data were 0.1578 m and 0.1093 m, respectively; RMSE of UAVLS data were 0.3179 m and 0.4379 m, respectively). Compared with the first-echo method, the accuracies of the spike-free algorithm and GPMF improved by approximately 23% and 22%, respectively. The pit-free algorithm and highest point interpolation method also have advantages in high-resolution CHM generation. The global smooth filter method based on the first-echo CHM reduced the average canopy height by approximately 7.73%. Coniferous forests require more pit-filling than broad-leaved forests and mixed forests. Although the results of individual tree applications indicated that there was no significant difference between these methods except the median filter method, pit-filling is still of great significance for generating high-resolution CHMs. This study provides guidance for using high-resolution UAVLS in forestry applications.

Author(s):  
Scott J. Wilson ◽  
Richard W. Hedley ◽  
Mir Mustafizur Rahman ◽  
Erin M. Bayne

Study of bird microhabitat use is time consuming and labour intensive. Our objective was to present a proof of concept of how emerging, high-resolution bird survey methods can be combined with vegetation data collected via unmanned aerial vehicles to accurately and efficiently quantify bird microhabitat. We used sound localization to determine Mourning Warbler (Geothlypis philadelphia) songposts, and a hybrid light detection and ranging/digital aerial photogrammetry canopy height model to demonstrate how Mourning Warblers use regenerating vegetation on reclaimed wellsites. We identified differences in vegetation heights at locations used by Mourning Warblers versus random background locations on a reclaimed wellsite, with sound localization and the canopy height model both providing measurements with 1-metre resolution (t = -3.45, p-value = 0.002). These technologies have the potential to provide large numbers of accurate bird locations that can be associated with high-resolution, spatially explicit vegetation metrics, and be used in different ecological niche modeling frameworks.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Weiwei Jia ◽  
Yusen Sun ◽  
Timo Pukkala ◽  
Xingji Jin

Airborne laser scanning (ALS) is becoming common in forest inventories. The data obtained by laser scanning contain the locations of the echoes of laser pulses. If these data are used in forest management, they need to be segmented into spatially continuous stands that are homogeneous in terms of stand attributes. Prior to segmentation, the laser pulse data can be processed into canopy height model, which shows the distance of canopy surface from the ground. This study used a cellular automaton with a canopy height model for the delineation of tree stands, considering three criteria: homogeneity of the stand in terms of growing stock attributes, stand area, and stand shape. A new method to consider stand shape in cellular automaton was presented. This method had a clear beneficial effect on the stand delineation result. Increasing weight of the shape criterion led to more roundish and less irregular stand shapes. Also, increasing weight of the stand area improved the shape of the stands. The cellular automaton led to average stand areas of 1–1.7 ha, depending on cell size and the parameters of the automaton. The cellular automaton explained 84.7–94.2% of the variation in maximum canopy height when 5 m × 5 m cells were used. Cell sizes of 5–10 m were found to result in the best stand delineation results.


2019 ◽  
Vol 11 (23) ◽  
pp. 2880 ◽  
Author(s):  
Qiuli Yang ◽  
Yanjun Su ◽  
Shichao Jin ◽  
Maggi Kelly ◽  
Tianyu Hu ◽  
...  

This study investigated the effects of forest type, leaf area index (LAI), canopy cover (CC), tree density (TD), and the coefficient of variation of tree height (CVTH) on the accuracy of different individual tree segmentation methods (i.e., canopy height model, pit-free canopy height model (PFCHM), point cloud, and layer stacking seed point) with LiDAR data. A total of 120 sites in the Sierra Nevada Forest (California) and Shavers Creek Watershed (Pennsylvania) of the United States, covering various vegetation types and characteristics, were used to analyze the performance of the four selected individual tree segmentation algorithms. The results showed that the PFCHM performed best in all forest types, especially in conifer forests. The main forest characteristics influencing segmentation methods were LAI and CC, LAI and TD, and CVTH in conifer, broadleaf, and mixed forests, respectively. Most of the vegetation characteristics (i.e., LAI, CC, and TD) negatively correlated with all segmentation methods, while the effect of CVTH varied with forest type. These results can help guide the selection of individual tree segmentation method given the influence of vegetation characteristics.


Author(s):  
R. J. L. Argamosa ◽  
E. C. Paringit ◽  
K. R. Quinton ◽  
F. A. M. Tandoc ◽  
R. A. G. Faelga ◽  
...  

The generation of high resolution canopy height model (CHM) from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM’s curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.


Author(s):  
R. J. L. Argamosa ◽  
E. C. Paringit ◽  
K. R. Quinton ◽  
F. A. M. Tandoc ◽  
R. A. G. Faelga ◽  
...  

The generation of high resolution canopy height model (CHM) from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM’s curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.


Agriculture ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 70 ◽  
Author(s):  
Niko Viljanen ◽  
Eija Honkavaara ◽  
Roope Näsi ◽  
Teemu Hakala ◽  
Oiva Niemeläinen ◽  
...  

Silage is the main feed in milk and ruminant meat production in Northern Europe. Novel drone-based remote sensing technology could be utilized in many phases of silage production, but advanced methods of utilizing these data are still developing. Grass swards are harvested three times in season, and fertilizer is applied similarly three times—once for each harvest when aiming at maximum yields. Timely information of the yield is thus necessary several times in a season for making decisions on harvesting time and rate of fertilizer application. Our objective was to develop and assess a novel machine learning technique for the estimation of canopy height and biomass of grass swards utilizing multispectral photogrammetric camera data. Variation in the studied crop stand was generated using six different nitrogen fertilizer levels and four harvesting dates. The sward was a timothy-meadow fescue mixture dominated by timothy. We extracted various features from the remote sensing data by combining an ultra-high resolution photogrammetric canopy height model (CHM) with a pixel size of 1.0 cm and red, green, blue (RGB) and near-infrared range intensity values and different vegetation indices (VI) extracted from orthophoto mosaics. We compared the performance of multiple linear regression (MLR) and a Random Forest estimator (RF) with different combinations of the CHM, RGB and VI features. The best estimation results with both methods were obtained by combining CHM and VI features and all three feature classes (CHM, RGB and VI features). Both estimators provided equally accurate results. The Pearson correlation coefficients (PCC) and Root Mean Square Errors (RMSEs) of the estimations were at best 0.98 and 0.34 t/ha (12.70%), respectively, for the dry matter yield (DMY) and 0.98 and 1.22 t/ha (11.05%), respectively, for the fresh yield (FY) estimations. Our assessment of the sensitivity of the method with respect to different development stages and different amounts of biomass showed that the use of the machine learning technique that integrated multiple features improved the results in comparison to the simple linear regressions. These results were extremely promising, showing that the proposed multispectral photogrammetric approach can provide accurate biomass estimates of grass swards, and could be developed as a low-cost tool for practical farming applications.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 905 ◽  
Author(s):  
Guerra-Hernández ◽  
Cosenza ◽  
Cardil ◽  
Silva ◽  
Botequim ◽  
...  

Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired from Unmanned Aerial Vehicles (UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model Efficiency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant difference was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantations.


Sign in / Sign up

Export Citation Format

Share Document