scholarly journals Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides)

Author(s):  
Anne-Laure Ferchaud ◽  
Claire Mérot ◽  
Eric Normandeau ◽  
Jiannis Ragoussis ◽  
Charles Babin ◽  
...  

Abstract Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.

2021 ◽  
Author(s):  
Anne-Laure Ferchaud ◽  
Claire Merot ◽  
Eric Normandeau ◽  
Ioannis Ragoussis ◽  
Charles Babin ◽  
...  

Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. In this study, we combined single molecule sequencing of long reads (Pacific Sciences) with Chromatin Conformation Capture sequencing (Hi-C) data to provide the first chromosome-level genome reference for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96 % of its total length distributed among 24 chromosomes. The investigation of its syntenic relationships with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that flatfishes do not escape the rule applied to other teleost fish and exhibit a high level of plasticity and turnover in sex-determination mechanisms. A whole-genome sequence analysis of 198 individuals allowed us to draw a full picture of the molecular sex determination (SD) system for Greenland Halibut, revealing that this species possesses a very nascent male heterogametic XY system, with a putative major effect of the sox2 gene, also described as the main SD driver in two other flatfishes. Interestingly, our study also suggested for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of early steps of sex chromosome evolution.


2020 ◽  
Vol 37 (8) ◽  
pp. 2357-2368 ◽  
Author(s):  
Yiyuan Li ◽  
Bo Zhang ◽  
Nancy A Moran

Abstract Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.


2012 ◽  
Vol 70 (2) ◽  
pp. 342-351 ◽  
Author(s):  
Rosario Domínguez-Petit ◽  
Patrick Ouellet ◽  
Yvan Lambert

Abstract Domínguez-Petit, R., Ouellet, P., and Lambert, Y. 2013. Reproductive strategy, egg characteristics and embryonic development of Greenland halibut (Reinhardtius hippoglossoides). – ICES Journal of Marine Science, 70: 342–351. Despite the commercial importance of Greenland halibut (GH), important gaps exist in our knowledge of the reproductive and early life stage biology for this species. The present study examined through laboratory experiments the spawning strategy, realized fecundity, egg characteristics, biochemical composition, and embryonic development of GH. The results confirmed the hypothesis that GH is a single-batch spawner producing large eggs, resulting in low realized fecundity. Embryonic development and hatching time are highly dependent on incubation temperature; 50% hatching occurred after 46, 30, and 24 days at 2, 4, and 6°C, respectively. Few changes in the biochemical composition of the eggs are observed during embryonic development. Newly hatched larvae are not well developed, having a large yolk sac, no pigmentation and incomplete development of the jaws. Egg specific density confirmed the mesopelagic distribution of the eggs at sea. However, important buoyancy changes occurring in the last 3–4 days before hatching indicate that larvae hatch higher in the water column. These results are important for understanding advection and dispersion processes of GH eggs and larvae and the connectivity between spawning grounds and nursery areas.


1993 ◽  
Vol 50 (10) ◽  
pp. 2175-2181 ◽  
Author(s):  
J. R. Arthur ◽  
E. Albert

The usefulness of parasites as biological tags for stocks of Greenland halibut (Reinharditius hippoglossoides) occurring off the Atlantic coast of Canada and in the Gulf of St. Lawrence was investigated. Nonparametric discriminant function analyses of eight collections comprising a total of 231 large fish (>39 cm) using counts for selected parasite taxa (Corynosoma strumosum juvenile, Otodistomum sp. metacercaria, Contracaecinea spp. larva, Anisakis simplex larva, and Pseudoterranova decipiens larva) gave accurate results (almost 100% correct classification) for the separation of fish from the Gulf of St. Lawrence from those collected from adjacent areas of the Saguenay Fjord and the Atlantic Ocean off Labrador. Little, if any, mixing of subadult or adult fish apparently occurs among these areas.


2021 ◽  
Vol 376 (1832) ◽  
pp. 20200089
Author(s):  
Heiner Kuhl ◽  
Yann Guiguen ◽  
Christin Höhne ◽  
Eva Kreuz ◽  
Kang Du ◽  
...  

Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet ( Acipenser ruthenus ). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages ( A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso ), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species ( A. gueldenstaedtii, A. baerii ). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


2014 ◽  
Vol 71 (5) ◽  
pp. 763-774 ◽  
Author(s):  
Denis Roy ◽  
David C. Hardie ◽  
Margaret A. Treble ◽  
James D. Reist ◽  
Daniel E. Ruzzante

Assessment of population structure is critical to the design and implementation of sound management and conservation strategies. However, population structure must be assessed using markers attuned to population genetic processes such as genetic drift and gene flow, which reflect actual levels of reproductive isolation among putative genetic clusters. This is critical for highly exploited, commercial species that form the backbone of regional and local economies. Here, we show extremely low levels of population genetic differentiation among Greenland halibut (Reinhardtius hippoglossoides) collected from throughout the Northwest Atlantic, which cannot be statistically differentiated from panmixia using 12 species-specific polymorphic microsatellite markers. In contrast, some previous studies have demonstrated significant differences among individuals collected from various parts of the species’ range using a variety of both genetic and nongenetic techniques. In accordance with other reports and consistent with the species’ life history, we demonstrate that the most parsimonious explanation reconciling observed patterns is a repeated high degree of local differentiation of new recruits and colonizers originating from a common gene pool. Such a scenario has important conservation implications in terms of devising more appropriate strategies balancing species persistence and replenishment with sustainable resource use.


Sign in / Sign up

Export Citation Format

Share Document