polyploidization event
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 376 (1832) ◽  
pp. 20200089
Author(s):  
Heiner Kuhl ◽  
Yann Guiguen ◽  
Christin Höhne ◽  
Eva Kreuz ◽  
Kang Du ◽  
...  

Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet ( Acipenser ruthenus ). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages ( A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso ), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species ( A. gueldenstaedtii, A. baerii ). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


2021 ◽  
Author(s):  
Rong-Chien Lin ◽  
Mark D. Rausher

AbstractIt has been suggested that gene duplication and polyploidization create opportunities for the evolution of novel characters. However, the connections between the effects of polyploidization and morphological novelties have rarely been examined. In this study, we investigated whether petal pigmentation patterning in an allotetraploid Clarkia gracilis has evolved as a result of polyploidization. C. gracilis is thought to be derived through a recent polyploidization event with two diploid species, C. amoena huntiana and an extinct species that is closely related to C. lassenensis. We reconstructed phylogenetic relationships of the R2R3-MYBs (the regulators of petal pigmentation) from two subspecies of C. gracilis and the two purported progenitors, C. a. huntiana and C. lassenensis. The gene tree reveals that these R2R3-MYB genes have arisen through duplications that occurred before the divergence of the two progenitor species, i.e., before polyploidization. After polyploidization and subsequent gene loss, only one of the two orthologous copies inherited from the progenitors was retained in the polyploid, turning it to diploid inheritance. We examined evolutionary changes in these R2R3-MYBs and in their expression, which reveals that the changes affecting patterning (including expression domain contraction, loss-of-function mutation, cis-regulatory mutation) occurred after polyploidization within the C. gracilis lineages. Our results thus suggest that polyploidization itself is not necessary in producing novel petal color patterns. By contrast, duplications of R2R3-MYB genes in the common ancestor of the two progenitors have apparently facilitated diversification of petal pigmentation patterns.


2021 ◽  
Author(s):  
Haibin Wang ◽  
Jun He ◽  
Zhongyu Yu ◽  
Jiafu Jiang ◽  
Sumei Chen ◽  
...  

Abstract Background Whole genome duplication, associated with the induction of widespread genetic changes, has played an important role in the evolution of many plant taxa. The majority of extant angiosperm species have undergone at least one polyploidization event, forming either an auto- or allopolyploid organism. Compared with allopolyploidization, however, few studies have examined autopolyploidization, and almost no studies have focused on the response of genetic changes to autopolyploidy. Results In the present study, newly synthesized C. nankingense autotetraploids (Asteraceae) were employed to characterize the genome shock following autopolyploidization. Available evidence suggested that the genetic changes primarily involved the loss of old fragments and the gain of novel fragments, and some novel sequences were potential long terminal repeat (LTR) retrotransposons. As Ty1-copia and Ty3-gypsy elements represent the two main superfamilies of LTR retrotransposons, the dynamics of Ty1-copia and Ty3-gypsy were evaluated using RT-PCR, transcriptome sequencing and LTR retrotransposon-based molecular marker techniques. These results suggest that autopolyploidization might also be accompanied by perturbations of LTR retrotransposons, and the emergence retrotransposon insertions might show more rapid homologue divergence, resulting in diploid-like behaviour, potentially accelerating the evolutionary process among progenies. Conclusions Our results strongly suggest a need to expand current evolutionary framework to encompass a genetic dimension when seeking to understand genomic shock following autopolyploidization in Asteraceae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Maguilla ◽  
Marcial Escudero ◽  
Vania Jiménez-Lobato ◽  
Zoila Díaz-Lifante ◽  
Cristina Andrés-Camacho ◽  
...  

The Mediterranean region is one of the most important worldwide hotspots in terms of number of species and endemism, and multiple hypotheses have been proposed to explain how diversification occurred in this area. The contribution of different traits to the diversification process has been evaluated in different groups of plants. In the case of Centaurium (Gentianaceae), a genus with a center of diversity placed in the Mediterranean region, polyploidy seems to have been an important driver of diversification as more than half of species are polyploids. Moreover, ploidy levels are strongly geographically structured across the range of the genus, with tetraploids distributed towards more temperate areas in the north and hexaploids in more arid areas towards the south. We hypothesize that the diversification processes and biodiversity patterns in Centaurium are explained by the coupled formation of polyploid lineages and the colonization of different areas. A MCC tree from BEAST2 based on three nuclear DNA regions of a total of 26 taxa (full sampling, of 18 species and 8 subspecies) was used to perform ancestral area reconstruction analysis in “BioGeoBEARS.” Chromosome evolution was analyzed in chromEvol and diversification in BAMM to estimate diversification rates. Our results suggest that two major clades diverged early from the common ancestor, one most likely in the western Mediterranean and the other in a widespread area including west and central Asia (but with high uncertainty in the exact composition of this widespread area). Most ancestral lineages in the western clade remained in or around the western Mediterranean, and dispersal to other areas (mainly northward and eastward), occurred at the tips. Contrarily, most ancestral lineages in the widespread clade had larger ancestral areas. Polyploidization events in the western clade occurred at the tips of the phylogeny (with one exception of a polyploidization event in a very shallow node) and were mainly tetraploid, while polyploidization events occurred in the widespread clade were at the tips and in an ancestral node of the phylogeny, and were mainly hexaploid. We show how ancestral diploid lineages remained in the area of origin, whereas recent and ancestral polyploidization could have facilitated colonization and establishment in other areas.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1489
Author(s):  
Wojciech Bielski ◽  
Michał Książkiewicz ◽  
Denisa Šimoníková ◽  
Eva Hřibová ◽  
Karolina Susek ◽  
...  

Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.


2020 ◽  
Author(s):  
Heiner Kuhl ◽  
Yann Guiguen ◽  
Christin Höhne ◽  
Eva Kreuz ◽  
Kang Du ◽  
...  

SummarySeveral hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet (Acipenser ruthenus). Using chromosome-scale assemblies and pool-sequencing, we first identified a ~16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages (A. sturio, A. oxyrinchus vs. A. ruthenus, Huso huso), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species (A. gueldenstaedtii, A. baerii). Conservation of a female-specific sequence for a long period, representing 180 My of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives.


2020 ◽  
Vol 10 (12) ◽  
pp. 4387-4398
Author(s):  
Dhanushya Ramachandran ◽  
Michael R. McKain ◽  
Elizabeth A. Kellogg ◽  
Jennifer S. Hawkins

Both polyploidization and transposable element (TE) activity are known to be major drivers of plant genome evolution. Here, we utilize the Zea-Tripsacum clade to investigate TE activity and accumulation after a shared polyploidization event. Comparisons of TE evolutionary dynamics in various Zea and Tripsacum species, in addition to two closely related diploid species, Urelytrum digitatum and Sorghum bicolor, revealed variation in repeat content among all taxa included in the study. The repeat composition of Urelytrum is more similar to that of Zea and Tripsacum compared to Sorghum, despite the similarity in genome size with the latter. Although LTR-retrotransposons were abundant in all species, we observed an expansion of the copia superfamily, specifically in Z. mays and T. dactyloides, species that have adapted to more temperate environments. Additional analyses of the genomic distribution of these retroelements provided evidence of biased insertions near genes involved in various biological processes including plant development, defense, and macromolecule biosynthesis. Specifically, copia insertions in Zea and T. dactyloides were significantly enriched near genes involved in abiotic stress response, suggesting independent evolution post Zea-Tripsacum divergence. The lack of copia insertions near the orthologous genes in S. bicolor suggests that duplicate gene copies generated during polyploidization may offer novel neutral sites for TEs to insert, thereby providing an avenue for subfunctionalization via TE insertional mutagenesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simone Scalabrin ◽  
Lucile Toniutti ◽  
Gabriele Di Gaspero ◽  
Davide Scaglione ◽  
Gabriele Magris ◽  
...  

2020 ◽  
Author(s):  
Dhanushya Ramachandran ◽  
Michael R. McKain ◽  
Elizabeth A. Kellogg ◽  
Jennifer S. Hawkins

AbstractBoth polyploidization and transposable element (TE) activity are known to be major drivers of plant genome evolution. Here, we utilize the Zea-Tripsacum clade to investigate TE activity and accumulation after a recent shared polyploidization event. Comparisons of TE evolutionary dynamics in various Zea and Tripsacum species, in addition to two closely related diploid species, Urelytrum digitatum and Sorghum bicolor, revealed existing variation in repeat content among all taxa included in the study. The repeat composition of Urelytrum is more similar to that of Zea and Tripsacum compared to Sorghum, despite the similarity in genome size with the latter. Although the genomes of all species studied had abundant LTR-retrotransposons, we observed an expansion of the copia superfamily, specifically in Z. mays and T. dactyloides, species that have adapted to more temperate environments. Additional analyses of the genomic distribution of these copia elements provided evidence of biased insertions near genes involved in various biological processes including plant development, defense, and macromolecule biosynthesis. The lack of copia insertions near the orthologous genes in S. bicolor suggests that duplicate gene copies generated during polyploidization may offer novel neutral sites for TEs to insert, thereby providing an avenue for subfunctionalization via TE insertional mutagenesis.


2018 ◽  
Vol 156 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Martin Knytl ◽  
Tereza Tlapakova ◽  
Tereza Vankova ◽  
Vladimir Krylov

The African clawed frogs of the subgenus Silurana comprise both diploid and tetraploid species. The root of the polyploidization event leading to the extant Xenopus calcaratus, X. mellotropicalis, and X. epitropicalis is not fully understood so far. In X. mellotropicalis, we previously proposed 2 evolutionary scenarios encompassing complete (scenario A) or incomplete (scenario B) translocation of a heterochromatic block from chromosome 9 to 2 in a diploid ancestor. To resolve this puzzle, we performed FISH coupled with tyramide signal amplification (FISH-TSA) using 5 X. tropicalis and X. mellotropicalis single copy gene probes (gyg2, cept1, fn1, ndufs1, and sf3b1) reflecting borders of the heterochromatic blocks in X. tropicalis chromosome 9 (XTR 9) and X. mellotropicalis chromosome 9b (XME 9b) and XME 2a. cDNA sequencing recognized both homoeologous genes in X. mellotropicalis. Comparison of gene physical mapping between X. tropicalis and X. mellotropicalis clearly confirmed complete rather than incomplete translocation t(9;2) of the heterochromatic block in the diploid predecessor and thus favored scenario A regarding the formation of an ancestral allotetraploid karyotype.


Sign in / Sign up

Export Citation Format

Share Document