scholarly journals The Evolution of the Mammalian ABCA6-like Genes: Analysis of Phylogenetic, Expression, and Population Genetic Data Reveals Complex Evolutionary Histories

2020 ◽  
Vol 12 (11) ◽  
pp. 2093-2106
Author(s):  
Martin W Breuss ◽  
Allen Mamerto ◽  
Tanya Renner ◽  
Elizabeth R Waters

Abstract ABC membrane transporters are a large and complex superfamily of ATP-binding cassette transporters that are present in all domains of life. Both their essential function and complexity are reflected by their retention across large expanses of organismal diversity and by the extensive expansion of individual members and subfamilies during evolutionary history. This expansion has resulted in the diverse ABCA transporter family that has in turn evolved into multiple subfamilies. Here, we focus on the ABCA6-like subfamily of ABCA transporters with the goal of understanding their evolutionary history including potential functional changes in, or loss of, individual members. Our analysis finds that ABCA6-like genes, consisting of ABCA6, 8, 9, and 10, are absent from representatives of both monotremes and marsupials and thus the duplications that generated these families most likely occurred at the base of the Eutherian or placental mammals. We have found evidence of both positive and relaxed selection among the ABCA6-like genes, suggesting dynamic changes in function and the potential of gene redundancy. Analysis of the ABCA10 genes further suggests that this gene has undergone relaxed selection only within the human lineage. These findings are complemented by human population data, where we observe an excess of deactivating homozygous mutations. We describe the complex evolutionary history of this ABCA transporter subfamily and demonstrate through the combination of evolutionary and population genetic analysis that ABCA10 is undergoing pseudogenization within humans.


2017 ◽  
Vol 26 (9) ◽  
pp. 2482-2497 ◽  
Author(s):  
Corine N. Schoebel ◽  
Leticia Botella ◽  
Vaidotas Lygis ◽  
Daniel Rigling


2017 ◽  
Vol 107 (9) ◽  
pp. 1000-1010 ◽  
Author(s):  
N. J. Grünwald ◽  
S. E. Everhart ◽  
B. J. Knaus ◽  
Z. N. Kamvar

Population genetic analysis is a powerful tool to understand how pathogens emerge and adapt. However, determining the genetic structure of populations requires complex knowledge on a range of subtle skills that are often not explicitly stated in book chapters or review articles on population genetics. What is a good sampling strategy? How many isolates should I sample? How do I include positive and negative controls in my molecular assays? What marker system should I use? This review will attempt to address many of these practical questions that are often not readily answered from reading books or reviews on the topic, but emerge from discussions with colleagues and from practical experience. A further complication for microbial or pathogen populations is the frequent observation of clonality or partial clonality. Clonality invariably makes analyses of population data difficult because many assumptions underlying the theory from which analysis methods were derived are often violated. This review provides practical guidance on how to navigate through the complex web of data analyses of pathogens that may violate typical population genetics assumptions. We also provide resources and examples for analysis in the R programming environment.



2021 ◽  
Vol 12 ◽  
Author(s):  
Anthony C. Woo ◽  
Morgan Gaia ◽  
Julien Guglielmini ◽  
Violette Da Cunha ◽  
Patrick Forterre

Double-stranded DNA viruses of the realm Varidnaviria (formerly PRD1-adenovirus lineage) are characterized by homologous major capsid proteins (MCPs) containing one (kingdom: Helvetiavirae) or two β-barrel domains (kingdom: Bamfordvirae) known as the jelly roll folds. Most of them also share homologous packaging ATPases (pATPases). Remarkably, Varidnaviria infect hosts from the three domains of life, suggesting that these viruses could be very ancient and share a common ancestor. Here, we analyzed the evolutionary history of Varidnaviria based on single and concatenated phylogenies of their MCPs and pATPases. We excluded Adenoviridae from our analysis as their MCPs and pATPases are too divergent. Sphaerolipoviridae, the only family in the kingdom Helvetiavirae, exhibit a complex history: their MCPs are very divergent from those of other Varidnaviria, as expected, but their pATPases groups them with Bamfordvirae. In single and concatenated trees, Bamfordvirae infecting archaea were grouped with those infecting bacteria, in contradiction with the cellular tree of life, whereas those infecting eukaryotes were organized into three monophyletic groups: the Nucleocytoviricota phylum, formerly known as the Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs), Lavidaviridae (virophages) and Polintoviruses. Although our analysis mostly supports the recent classification proposed by the International Committee on Taxonomy of Viruses (ICTV), it also raises questions, such as the validity of the Adenoviridae and Helvetiavirae ranking. Based on our phylogeny, we discuss current hypotheses on the origin and evolution of Varidnaviria and suggest new ones to reconcile the viral and cellular trees.



2016 ◽  
Author(s):  
Kimberly F. McManus ◽  
Angela Taravella ◽  
Brenna Henn ◽  
Carlos D. Bustamante ◽  
Martin Sikora ◽  
...  

AbstractThe human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of its strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of a locus under positive selection in humans.Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human and great ape genomes, to analyze the fine scale population structure of DARC. We estimate the time to most recent common ancestor (TMRCA) of the FY*O mutation to be 42 kya (95% CI: 34–49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011–0.18), which is among the strongest estimated in the genome. We estimate the TMRCA of the FY*A mutation to be 57 kya (95% CI: 48–65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.Author SummaryInfectious diseases have undoubtedly played an important role in ancient and modern human history. Yet, there are relatively few regions of the genome involved in resistance to pathogens that have shown a strong selection signal. We revisit the evolutionary history of a gene associated with resistance to the most common malaria-causing parasite, Plasmodium vivax, and show that it is one of regions of the human genome that has been under strongest selective pressure in our evolutionary history (selection coefficient: 5%). Our results are consistent with a complex evolutionary history of the locus involving selection on a mutation that was at a very low frequency in the ancestral African population (standing variation) and a large differentiation between European, Asian and African populations.



Polar Biology ◽  
2010 ◽  
Vol 33 (9) ◽  
pp. 1179-1194 ◽  
Author(s):  
Gregory O’Corry-Crowe ◽  
Christian Lydersen ◽  
Mads Peter Heide-Jørgensen ◽  
Lauren Hansen ◽  
Lev M. Mukhametov ◽  
...  


2014 ◽  
Vol 111 (10) ◽  
pp. 3763-3768 ◽  
Author(s):  
James T. Kratzer ◽  
Miguel A. Lanaspa ◽  
Michael N. Murphy ◽  
Christina Cicerchi ◽  
Christina L. Graves ◽  
...  

Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients.



Sign in / Sign up

Export Citation Format

Share Document