TEMPERATURE-RELATED DIVERGENCE IN EXPERIMENTAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. GENETIC AND DEVELOPMENTAL BASIS OF WING SIZE AND SHAPE VARIATION

Genetics ◽  
1985 ◽  
Vol 109 (4) ◽  
pp. 665-689
Author(s):  
Sandro Cavicchi ◽  
Daniela Guerra ◽  
Gianfranco Giorgi ◽  
Cristina Pezzoli

ABSTRACT The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18°, 25°, 28°) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection.

2016 ◽  
Vol 85 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Mei Liu ◽  
Na Ma ◽  
Bao-Zhen Hua

Wing shape variation was investigated between the sexes and among four populations of the scorpionfly Dicerapanorpa magna (Chou, 1981) endemic to the Qin-Ba Mountains area, China through the landmark-based geometric morphometric approach. The results show that sexual dimorphism exists both in wing size and shape in D. magna. Significant differences exist in female wing size and shape among D. magna populations. The possible reasons of the wing variation are discussed based on the divergence time of D. magna in combination with the tectonic and climatic events in the Qin-Ba Mountains during the late Miocene-Pleistocene period. Whether reproductive isolation exists between different populations needs further research.


Zootaxa ◽  
2008 ◽  
Vol 1825 (1) ◽  
pp. 40 ◽  
Author(s):  
JASMINA LUDOŠKI ◽  
LJUBINKA FRANCUSKI ◽  
ANTE VUJIĆ ◽  
VESNA MILANKOV

A landmark-based geometric morphometric approach was used to assess differences in the size and shape of wing among/within three species of the Cheilosia canicularis group (Diptera: Syrphidae): C. canicularis, C. himantopus and C. orthotricha. Wing size and shape variation was observed from 25, 176 and 41 specimens of C. canicularis, C. himantopus and C. orthotricha, respectively, collected from six localities on the Balkan Peninsula. Significant differences in wing size were obtained among the analysed species and canonical variate analysis showed that wing shape was sufficiently different to allow the correct classification of 73% individuals of C. canicularis, 80% of C. orthotricha and 94% of C. himantopus, and clear delimitation of the species pairs C. canicularis/C. orthotricha and C. himantopus/C. orthotricha. In all analysed species, the consistent sex dimorphism in wing shape was observed indicating that female specimens had shorter and broader wings than males. The UPGMA cluster analysis based on squared Mahalanobis distances revealed close accordance with previously published phylogenetic relationships of these species indicated by allozyme and DNA sequence data analysis. Our results suggested that wing parameters contain useful information in quantification phenotypic variation and identification of species in this challenging group for taxonomy and systematics.


2012 ◽  
Vol 37 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Jorian Prudhomme ◽  
Filiz Gunay ◽  
Nil Rahola ◽  
Fouad Ouanaimi ◽  
Souad Guernaoui ◽  
...  

2016 ◽  
Author(s):  
Nick Testa ◽  
Ian Dworkin

Much of the morphological diversity in nature−including among sexes within a species−is a direct consequence of variation in size and shape. However, disentangling variation in sexual dimorphism for both shape (SShD), size (SSD) and their relationship with one another remains complex. Understanding how genetic variation influences both size and shape together, and how this in turn influences SSD and SShD is challenging. In this study we utilizeDrosophilawing size and shape as a model system to investigate how mutations influence size and shape as modulated by sex. Previous work has demonstrated that mutations in Epidermal Growth Factor Receptor (EGFR) and Transforming Growth Factor - β (TGF-β) signaling components can influence both wing size and shape. In this study we re-analyze this data to specifically address how they impact the relationship between size and shape in a sex-specific manner, in turn altering the pattern of sexual dimorphism. While most mutations influence shape overall, only a subset have a genotypic specific effect that influences SShD. Furthermore, while we observe sex-specific patterns of allometric shape variation, the effects of most mutations on allometry tend to be small. We discuss this within the context of using mutational analysis to understand sexual size and shape dimorphism.


2010 ◽  
Vol 23 (9) ◽  
pp. 1989-1997 ◽  
Author(s):  
J. K. ABBOTT ◽  
S. BEDHOMME ◽  
A. K. CHIPPINDALE

2020 ◽  
Author(s):  
Luis M. Leyton-Ramos ◽  
Oscar Alexander Aguirre-Obando ◽  
Jonny Edward Duque ◽  
Víctor Hugo García-Merchán

AbstractIn mosquitoes of medical importance, wing shape and size can vary with altitude, an aspect that can influence dispersion and, consequently, their vector capacity. Using geometric morphometry analysis, Aedes aegypti wing size and shape variation of males and females was studied in four altitudes in the second-smallest department in Colombia: 1.200 m (Tebaida), 1.400 m (Armenia), 1.500 m (Calarcá), and 1.700 m (Filandia). Wing shape in males (P < 0.001) and females (P < 0.001) was significantly different through the altitudinal gradient; in turn, wing size in males followed the altitudinal gradient (Males R2 = 0.04946, P = 0.0002), Females (R2 = 0.0011, P = 0.46). Wing allometry for males (P < 0.001) and females (P < 0.001) was significant. Likewise, the shape and size of the wings of males (P < 0.001) and females (P < 0.001) had significant fluctuating asymmetry. It is concluded that, in a small scale with an altitudinal variation of 500 meters, it is detected that the size and shape of the wings varied in A. aegypti, principal vector of dengue, chikungunya, and Zika. The fluctuating asymmetry is present in the individuals studied and could be associated with environmental effects caused by vector control campaigns present in some sampling locations.


2010 ◽  
Vol 43 (1) ◽  
pp. 71-79 ◽  
Author(s):  
V Trotta ◽  
C Pertoldi ◽  
A Rudoy ◽  
T Manenti ◽  
S Cavicchi ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julieta Nattero ◽  
Gastón Mougabure-Cueto ◽  
Vincent Debat ◽  
Ricardo E. Gürtler

Abstract Background Triatomine control campaigns have traditionally consisted of spraying the inside of houses with pyrethroid insecticides. However, exposure to sublethal insecticide doses after the initial application is a common occurrence and may have phenotypic consequences for survivors. Here, using Triatoma infestans (the main vector of Chagas disease in the Southern Cone of South America) as a model species, we quantified the effects of exposure to a sublethal dose of pyrethroid insecticide on wing morphology. We tested if the treatment (i) induced a plastic effect (change in the character mean); (ii) altered environmental canalisation (higher individual variation within genotypes); (iii) altered genetic canalisation (higher variation among genotypes); and (iv) altered developmental stability (higher fluctuating asymmetry [FA]). Methods Each of 25 full-sib families known to be susceptible to pyrethroid insecticides were split in two groups: one to be treated with a sublethal dose of deltamethrin (insecticide-treated group) and the other to be treated with pure acetone (control group). Wings of the emerging adults were used in a landmark-based geometric morphometry analysis to extract size and shape measurements. Average differences among treatments were measured. Levels of variation among families, among individuals within families and among sides within individuals were computed and compared among treatments. Results Wing size and shape were affected by a sublethal dose of deltamethrin. The treated insects had larger wings and a more variable wing size and shape than control insects. For both wing size and shape, genetic variation was higher in treated individuals. Individual variations and variations in FA were also greater in deltamethrin-treated insects than in control ones for all full-sib families; however, the patterns of shape variation associated with genetic variation, individual variation and FA were different. Conclusions Insects exposed to a sublethal dose of deltamethrin presented larger, less symmetrical and less canalised wings. The insecticide treatment jointly impaired developmental stability and genetic and environmental canalisation. The divergent patterns of shape variation suggest that the related developmental buffering processes differed at least partially. The morphological modifications induced by a single sublethal exposure to pyrethroids early in life may impinge on subsequent flight performance and consequently affect the dynamics of house invasion and reinfestation, and the effectiveness of triatomine control operations. Graphical Abstract


2013 ◽  
Vol 73 (4) ◽  
pp. 887-893 ◽  
Author(s):  
LA Nunes ◽  
GB Passos ◽  
CAL Carvalho ◽  
ED Araújo

This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.


Sign in / Sign up

Export Citation Format

Share Document