scholarly journals Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini)

2013 ◽  
Vol 73 (4) ◽  
pp. 887-893 ◽  
Author(s):  
LA Nunes ◽  
GB Passos ◽  
CAL Carvalho ◽  
ED Araújo

This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.

2020 ◽  
Author(s):  
Luis M. Leyton-Ramos ◽  
Oscar Alexander Aguirre-Obando ◽  
Jonny Edward Duque ◽  
Víctor Hugo García-Merchán

AbstractIn mosquitoes of medical importance, wing shape and size can vary with altitude, an aspect that can influence dispersion and, consequently, their vector capacity. Using geometric morphometry analysis, Aedes aegypti wing size and shape variation of males and females was studied in four altitudes in the second-smallest department in Colombia: 1.200 m (Tebaida), 1.400 m (Armenia), 1.500 m (Calarcá), and 1.700 m (Filandia). Wing shape in males (P < 0.001) and females (P < 0.001) was significantly different through the altitudinal gradient; in turn, wing size in males followed the altitudinal gradient (Males R2 = 0.04946, P = 0.0002), Females (R2 = 0.0011, P = 0.46). Wing allometry for males (P < 0.001) and females (P < 0.001) was significant. Likewise, the shape and size of the wings of males (P < 0.001) and females (P < 0.001) had significant fluctuating asymmetry. It is concluded that, in a small scale with an altitudinal variation of 500 meters, it is detected that the size and shape of the wings varied in A. aegypti, principal vector of dengue, chikungunya, and Zika. The fluctuating asymmetry is present in the individuals studied and could be associated with environmental effects caused by vector control campaigns present in some sampling locations.


Zootaxa ◽  
2008 ◽  
Vol 1825 (1) ◽  
pp. 40 ◽  
Author(s):  
JASMINA LUDOŠKI ◽  
LJUBINKA FRANCUSKI ◽  
ANTE VUJIĆ ◽  
VESNA MILANKOV

A landmark-based geometric morphometric approach was used to assess differences in the size and shape of wing among/within three species of the Cheilosia canicularis group (Diptera: Syrphidae): C. canicularis, C. himantopus and C. orthotricha. Wing size and shape variation was observed from 25, 176 and 41 specimens of C. canicularis, C. himantopus and C. orthotricha, respectively, collected from six localities on the Balkan Peninsula. Significant differences in wing size were obtained among the analysed species and canonical variate analysis showed that wing shape was sufficiently different to allow the correct classification of 73% individuals of C. canicularis, 80% of C. orthotricha and 94% of C. himantopus, and clear delimitation of the species pairs C. canicularis/C. orthotricha and C. himantopus/C. orthotricha. In all analysed species, the consistent sex dimorphism in wing shape was observed indicating that female specimens had shorter and broader wings than males. The UPGMA cluster analysis based on squared Mahalanobis distances revealed close accordance with previously published phylogenetic relationships of these species indicated by allozyme and DNA sequence data analysis. Our results suggested that wing parameters contain useful information in quantification phenotypic variation and identification of species in this challenging group for taxonomy and systematics.


2012 ◽  
Vol 37 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Jorian Prudhomme ◽  
Filiz Gunay ◽  
Nil Rahola ◽  
Fouad Ouanaimi ◽  
Souad Guernaoui ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 515
Author(s):  
Jeongho Kim ◽  
Jaehyun Kim ◽  
Wonchoel Lee ◽  
Ivana Karanovic

Cryptic species are a biological phenomenon only recently recognized due to progress in molecular studies. They pose a significant challenge to conventional taxonomic work since these species manifest low morphological differences, but considerable genetic disparity. New taxonomic methods are in development but have yet to be tested for many animal groups. Isopods belonging to the suborder Microcerberidea are one such group. The Asian microcerberid isopod, Coxicerberus fukudai (Ito, 1974), is a major component of marine interstitial fauna with suspected cryptic species inhabiting Japan and Korea. We chose six Korean populations with high molecular interpopulations divergence and applied 2D landmark-based geometric morphometrics to cephalic sensilla, pleonal points, and male pleopod II. This quantitative approach allowed us to study interpopulation size and shape variations, morphospace structure, and whether the morphological pattern mirrored the genetic species. We determined that a high degree of interpopulation size variation significantly influences shape changes. Once we removed the allometric effect, the size-corrected male pleopod II shape variations yielded a new species, C. jangsaensis sp. nov. At the same time, we were able to resolve the C. fukadai species complex.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3559 ◽  
Author(s):  
Cinthya M. Villegas ◽  
Vladimir Žikić ◽  
Saša S. Stanković ◽  
Sebastián A. Ortiz-Martínez ◽  
Ainara Peñalver-Cruz ◽  
...  

BackgroundParasitoids are frequently used in biological control due to the fact that they are considered host specific and highly efficient at attacking their hosts. As they spend a significant part of their life cycle within their hosts, feeding habits and life history of their host can promote specialization via host-race formation (sequential radiation). The specialized host races from different hosts can vary morphologically, behaviorally and genetically. However, these variations are sometimes inconspicuous and require more powerful tools in order to detect variation such as geometric morphometrics analysis.MethodsWe examinedAphidius ervi, an important introduced biological control agent in Chile associated with a great number of aphid species, which are exploiting different plant hosts and habitats. Several combinations (biotypes) of parasitoids with various aphid/host plant combinations were analyzed in order to obtain measures of forewing shape and size. To show the differences among defined biotypes, we chose 13 specific landmarks on each individual parasitoid wing. The analysis of allometric variation calculated in wing shape and size over centroid size (CS), revealed the allometric changes among biotypes collected from different hosts. To show all differences in shape of forewings, we made seven biotype pairs using an outline-based geometric morphometrics comparison.ResultsThe biotypeA. pis_pea(Acyrthosiphon pisumon pea) was the extreme wing size in this study compared to the other analyzed biotypes. Aphid hosts have a significant influence in the morphological differentiation of the parasitoid forewing, splitting biotypes in two groups. The first group consisted of biotypes connected withAcyrthosiphon pisumon legumes, while the second group is composed of biotypes connected with aphids attacking cereals, with the exception of theR. pad_wheat(Rhopalosiphum padion wheat) biotype. There was no significant effect of plant species on parasitoid wing size and shape.DiscussionAlthough previous studies have suggested that the genotype of parasitoids is of greater significance for the morphological variations of size and shape of wings, this study indicates that the aphid host on whichA. ervidevelops is the main factor to alter the structure of parasitoid forewings. Bigger aphid hosts implied longer and broader forewings ofA. ervi.


2016 ◽  
Author(s):  
Nick Testa ◽  
Ian Dworkin

Much of the morphological diversity in nature−including among sexes within a species−is a direct consequence of variation in size and shape. However, disentangling variation in sexual dimorphism for both shape (SShD), size (SSD) and their relationship with one another remains complex. Understanding how genetic variation influences both size and shape together, and how this in turn influences SSD and SShD is challenging. In this study we utilizeDrosophilawing size and shape as a model system to investigate how mutations influence size and shape as modulated by sex. Previous work has demonstrated that mutations in Epidermal Growth Factor Receptor (EGFR) and Transforming Growth Factor - β (TGF-β) signaling components can influence both wing size and shape. In this study we re-analyze this data to specifically address how they impact the relationship between size and shape in a sex-specific manner, in turn altering the pattern of sexual dimorphism. While most mutations influence shape overall, only a subset have a genotypic specific effect that influences SShD. Furthermore, while we observe sex-specific patterns of allometric shape variation, the effects of most mutations on allometry tend to be small. We discuss this within the context of using mutational analysis to understand sexual size and shape dimorphism.


Genetics ◽  
1985 ◽  
Vol 109 (4) ◽  
pp. 665-689
Author(s):  
Sandro Cavicchi ◽  
Daniela Guerra ◽  
Gianfranco Giorgi ◽  
Cristina Pezzoli

ABSTRACT The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18°, 25°, 28°) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection.


2009 ◽  
Vol 141 (6) ◽  
pp. 550-560 ◽  
Author(s):  
Ana Mitrovski Bogdanović ◽  
Ana Ivanović ◽  
Željko Tomanović ◽  
Vladimir Žikić ◽  
Petr Starý ◽  
...  

AbstractSexual dimorphism in size and shape has been studied in a wide range of organisms, but intraspecific variation in sexual dimorphism remains largely unexplored. In many parasitoid species the diversity of morphological-variation patterns within species is complicated by host effects. It is not known whether the magnitude and direction of sexual size dimorphism can be affected by the developmental environment (i.e., different host species). In this study we explored patterns of sexual dimorphism in size and shape in the aphid parasitoid Ephedrus persicae Froggatt. The analyzed sample consisted of 83 females and 54 males reared from five species of host aphids (Hemiptera: Aphididae) from various areas of the Palaearctic region. The most notable result of the study is that E. persicae displays divergent patterns of sexual dimorphism in body size and wing size: females have larger bodies than males, but males have larger wings. Our analysis of wing size and wing shape also showed significant within species variation in the degree and pattern of sexual dimorphism. Variation in wing shape between the sexes seems to be more conserved than variation in wing size. Variation in wing shape is influenced predominantly by host (biotype) and to a lesser extent by sexual dimorphism within a biotype.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julieta Nattero ◽  
Gastón Mougabure-Cueto ◽  
Vincent Debat ◽  
Ricardo E. Gürtler

Abstract Background Triatomine control campaigns have traditionally consisted of spraying the inside of houses with pyrethroid insecticides. However, exposure to sublethal insecticide doses after the initial application is a common occurrence and may have phenotypic consequences for survivors. Here, using Triatoma infestans (the main vector of Chagas disease in the Southern Cone of South America) as a model species, we quantified the effects of exposure to a sublethal dose of pyrethroid insecticide on wing morphology. We tested if the treatment (i) induced a plastic effect (change in the character mean); (ii) altered environmental canalisation (higher individual variation within genotypes); (iii) altered genetic canalisation (higher variation among genotypes); and (iv) altered developmental stability (higher fluctuating asymmetry [FA]). Methods Each of 25 full-sib families known to be susceptible to pyrethroid insecticides were split in two groups: one to be treated with a sublethal dose of deltamethrin (insecticide-treated group) and the other to be treated with pure acetone (control group). Wings of the emerging adults were used in a landmark-based geometric morphometry analysis to extract size and shape measurements. Average differences among treatments were measured. Levels of variation among families, among individuals within families and among sides within individuals were computed and compared among treatments. Results Wing size and shape were affected by a sublethal dose of deltamethrin. The treated insects had larger wings and a more variable wing size and shape than control insects. For both wing size and shape, genetic variation was higher in treated individuals. Individual variations and variations in FA were also greater in deltamethrin-treated insects than in control ones for all full-sib families; however, the patterns of shape variation associated with genetic variation, individual variation and FA were different. Conclusions Insects exposed to a sublethal dose of deltamethrin presented larger, less symmetrical and less canalised wings. The insecticide treatment jointly impaired developmental stability and genetic and environmental canalisation. The divergent patterns of shape variation suggest that the related developmental buffering processes differed at least partially. The morphological modifications induced by a single sublethal exposure to pyrethroids early in life may impinge on subsequent flight performance and consequently affect the dynamics of house invasion and reinfestation, and the effectiveness of triatomine control operations. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document