scholarly journals INDUCTION OF INTRACHROMOSOMAL RECOMBINATION IN YEAST BY INHIBITION OF THYMIDYLATE BIOSYNTHESIS

Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 375-392
Author(s):  
B A Kunz ◽  
G R Taylor ◽  
R H Haynes

ABSTRACT The biosynthesis of thymidylate in the yeast Saccharomyces cerevisiae can be inhibited by antifolate drugs. We have found that antifolate treatment enhances the formation of leucine prototrophs in a haploid strain of yeast carrying, on the same chromosome, two different mutant leu2 alleles separated by Escherichia coli plasmid sequences. That this effect is a consequence of thymine nucleotide depletion was verified by the finding that provision of exogenous thymidylate eliminates the increased production of Leu+ colonies. DNA hybridization analysis revealed that recombination, including reciprocal exchange, gene conversion and unequal sister-chromatid crossing over, between the duplicated genes gave rise to the induced Leu+ segregants. Although gene conversion unaccompanied by crossing over was responsible for the major fraction of leucine prototrophs, events involving reciprocal exchange exhibited the largest increase in frequency. These data show that recombination is induced between directly repeated DNA sequences under conditions of thymine nucleotide depletion. In addition, the results of this and previous studies are consistent with the possibility that inhibition of thymidylate biosynthesis in yeast may create a metabolic condition that provokes all forms of mitotic recombination.

Genome ◽  
1989 ◽  
Vol 32 (3) ◽  
pp. 383-388 ◽  
Author(s):  
P. K. Gupta ◽  
G. Fedak ◽  
S. J. Molnar ◽  
Roger Wheatcroft

DNA of 61 accessions representing 25 Hordeum species was tested for homology to a highly repeated 120-bp sequence from Secale cereale (rye). Homology to the probe (pSC119) was detected in dot blots of all species except H. vulgare (cultivated barley) and its related species, H. agriocrithon and H. spontaneum. Hybridization patterns of Southern blots of restriction fragments demonstrated both intraspecific and interspecific variation in the organization of complex units of DNA having homology to the probe. For eight species, digestion of the DNA with BamHI gave ladder patterns characteristic of tandem arrays of 120-bp repeat units. For EcoRI, HindIII, and SacI digests, the hybridization patterns appeared to be highly conserved in the section Hordeum, except those for H. bulbosum, which were unique. A further set of patterns for these three enzymes was common among the remaining species of the genus. Thus, DNA hybridization with pSC119 generally gave patterns consistent with the current taxonomy of Hordeum species, except that H. bulbosum and H. vulgare were not shown to be closely related.Key words: Hordeum, repeated DNA sequences, pSC119, species variation.


Genetics ◽  
1975 ◽  
Vol 81 (4) ◽  
pp. 615-629
Author(s):  
Christopher W Lawrence ◽  
Fred Sherman ◽  
Mary Jackson ◽  
Richard A Gilmore

ABSTRACT We have investigated the order of the four genes cyc1, rad7, SUP4, and cdc8 which form a tightly linked cluster on the right arm of chromosome X in the yeast Saccharomyces cerevisiae. Crossing over and coconversion data from tetrad analysis established the gene order to be centromere–cyc1–rad7–SUP4. Also cdc8 appeared to be distal to SUP4 on the basis of crossovers that were associated with conversion of SUP4. The frequencies of recombination and the occurrence of coconversions suggest that these four genes are contiguous or at least nearly so. Gene-conversion frequencies for several cyc1 alleles were studied, including cyc1–1, a deletion of the whole gene that extends into the rad7 locus. The cyc1–1 deletion was found to be capable of conversion, though at a frequency some fivefold less than the other alleles studied, and both 3:1 and 1:3 events were detected. In general 1:3 and 3:1 conversion events were equally frequent at all loci studied, and approximately 50% of conversions were accompanied by reciprocal recombination for flanking markers. The orientation of the cyc1 gene could not be clearly deduced from the behavior of the distal marker SUP4 in wild-type recombinants that arose from diploids heteroallelic for cyc1 mutations.


Genetics ◽  
1986 ◽  
Vol 112 (4) ◽  
pp. 947-962 ◽  
Author(s):  
Brian Charlesworth ◽  
Charles H Langley ◽  
Wolfgang Stephan

ABSTRACT We suggest hypotheses to account for two major features of chromosomal organization in higher eukaryotes. The first of these is the general restriction of crossing over in the neighborhood of centromeres and telomeres. We propose that this is a consequence of selection for reduced rates of unequal exchange between repeated DNA sequences for which the copy number is subject to stabilizing selection: microtubule binding sites, in the case of centromeres, and the short repeated sequences needed for terminal replication of a linear DNA molecule, in the case of telomeres. An association between proximal crossing over and nondisjunction would also favor the restriction of crossing over near the centromere. The second feature is the association between highly repeated DNA sequences of no obvious functional significance and regions of restricted crossing over. We show that highly repeated sequences are likely to persist longest (over evolutionary time) when crossing over is infrequent. This is because unequal exchange among repeated sequences generates single copy sequences, and a population that becomes fixed for a single copy sequence by drift remains in this state indefinitely (in the absence of gene amplification processes). Increased rates of exchange thus speed up the process of stochastic loss of repeated sequences.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Lyle O Ross ◽  
Susannah Rankin ◽  
Michèle F Shuster ◽  
Dean S Dawson

In most eukaryotic organisms, chiasmata, the connections formed between homologous chromosomes as a consequence of crossing over, are important for ensuring that the homologues move away from each other at meiosis I. Some organisms have the capacity to partition the rare homologues that have failed to experience reciprocal recombination. The yeast Saccharomyces cerevisiae is able to correctly partition achiasmate homologues with low fidelity by a mechanism that is largely unknown. It is possible to test which parameters affect the ability of achiasmate chromosomes to segregate by constructing strains that will have three achiasmate chromosomes at the time of meiosis. The meiotic partitioning of these chromosomes can be monitored to determine which ones segregate away from each other at meiosis I. This approach was used to test the influence of homologous yeast DNA sequences, recombination intiation sites, chromosome size and crossing over on the meiotic segregation of the model chromosomes. Chrome some size had no effect on achiasmate segregation. The influence of homologous yeast sequences on the segregation of noncrossover model chromosomes was negligible. In meioses in which two of the three model chromosomes experienced a crossover, they nearly always disjoined at meiosis I.


Genetics ◽  
1991 ◽  
Vol 127 (1) ◽  
pp. 39-51 ◽  
Author(s):  
A Stapleton ◽  
T D Petes

Abstract Although genetic distances are often assumed to be proportional to physical distances, chromosomal regions with unusually high (hotspots) or low (coldspots) levels of meiotic recombination have been described in a number of genetic systems. In general, the DNA sequences responsible for these effects have not been determined. We report that the 5' region of the beta-lactamase (ampR) gene of the bacterial transposon Tn3 is a hotspot for meiotic recombination when inserted into the chromosomes of the yeast Saccharomyces cerevisiae. When these sequences are homozygous, both crossing over and gene conversion are locally stimulated. The 5' end of the beta-lactamase gene is about 100-fold "hotter" for crossovers than an average yeast DNA sequence.


Genetics ◽  
1982 ◽  
Vol 102 (4) ◽  
pp. 653-664
Author(s):  
Bun-Ichiro Ono ◽  
Mitsuaki Tanaka ◽  
Masayo Kominami ◽  
Yumiko Ishino ◽  
Sumio Shinoda

ABSTRACT Recessive lysine-independent revertants were isolated from a ψ+ haploid strain of the yeast Saccharomyces cerevisiae containing one of the leucine-inserting UAA suppressors, SUP29, and various UAA mutations including lys1-1. The majority of the revertants were found to have recessive suppressors in addition to the pre-existing SUP29 mutation. The recessive suppressors were able to suppress only a very limited number of UAA mutations, and none of the UAG mutations thus far examined. The recessive inefficient UAA suppressors were assigned to three complementation groups, sup111, sup112, and sup113. A high incidence of gene conversion was observed for an allele of sup111. An antisuppressor acting on sup111, but not detectably on SUP29, was inadvertently obtained during the course of the study. Interactions between SUP29, sup111 and the antisuppressor asu12 were studied.


1991 ◽  
Vol 112 (2) ◽  
pp. 191-201 ◽  
Author(s):  
C Polizzi ◽  
L Clarke

We have examined the chromatin structure of centromere regions from the fission yeast Schizosaccharomyces pombe. The large and complex centromere regions of the S. pombe chromosomes encompass many kilobase pairs of DNA and contain several classes of tandemly repeated DNA sequences. The repeated sequences are further organized into a large inverted repeat flanking a central core, a conserved structural feature among all three centromeres in S. pombe. The nucleosomal configuration of the centromere regions is nonuniform and highly varied. Most of the centromere-specific repeated DNA sequences are packaged into nucleosomes typical of bulk chromatin. However, the central core and core-associated repeated sequences from the centromere regions of chromosomes I (cen1) and II (cen2), when present in S. pombe, show an altered chromatin structure, with little or no evidence of regular nucleosomal packaging. The atypical chromatin organization of the cen2 central core is not due to transcription, as no transcripts from this region were detected. These same DNA sequences, however, are packaged into nucleosomes typical of bulk chromatin when present in a nonfunctional environment on a minichromosome in the budding yeast Saccharomyces cerevisiae. Because the cen2 central core sequences themselves do not preclude regular nucleosomal packaging, we speculate that in S. pombe they constitute a specialized site of kinetochore protein assembly. The atypical nucleosomal pattern of the cen2 central core remains constant during the cell cycle, with only minor differences observed for some sequences. We propose that the unusual chromatin organization of the core region forms the basis of a higher order structural differentiation that distinguishes the centromere from the chromosome arms and specifies the essential structure for centromere function.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 69-78
Author(s):  
Sue Jinks-Robertson ◽  
Shariq Sayeed ◽  
Tamara Murphy

Meiotic recombination between artificial repeats positioned on nonhomologous chromosomes occurs efficiently in the yeast Saccharomyces cerevisiae. Both gene conversion and crossover eventS have been observed, with crossovers yielding reciprocal translocations. In the current study, 5.5-kb ura3 repeats positioned on chromosomes V and XV were used to examine the effect of ectopic recombination on meiotic chromosome segregation. Ura+ random spores were selected and gene conversion vs. crossover events were distinguished by Southern blot analysis. Approximately 15% of the crossover events between chromosomes V and XV were associated with missegregation of one of these chromosomes. The missegregation was manifest as hyperploid spores containing either both translocations plus a normal chromosome, or both normal chromosomes plus one of the translocations. In those cases where it could be analyzed, missegregation occurred at the first meiotic division. These data are discussed in terms of a model in which ectopic crossovers compete efficiently with normal allelic crossovers in directing meiotic chromosome segregation.


Genetics ◽  
1990 ◽  
Vol 126 (3) ◽  
pp. 563-574 ◽  
Author(s):  
B Rockmill ◽  
G S Roeder

Abstract The Saccharomyces cerevisiae red1 mutant fails to assemble synaptonemal complex during meiotic prophase. This mutant displays locus-specific reductions in interchromosomal gene conversion and a moderate reduction in crossing over. The occurrence of a significant amount of meiotically induced recombination in the red1 mutant indicates that the synaptonemal complex is not absolutely required for meiotic exchange. The RED1 gene product is required for intrachromosomal recombination in some assays but not others. Chromosomes that have undergone reciprocal exchange nevertheless nondisjoin in red1 mutants, indicating that crossovers are not sufficient for disjunction. Epistasis studies reveal that HOP1 is epistatic to RED1, and that RED1 acts in an independent pathway from MER1. A model for the function of the RED1 gene product in chromosome synapsis is discussed.


Genetics ◽  
1989 ◽  
Vol 122 (4) ◽  
pp. 759-772
Author(s):  
A Vincent ◽  
T D Petes

Abstract We examined meiotic and mitotic gene conversion events involved in deletion of Ty elements and other insertions from the genome of the yeast Saccharomyces cerevisiae. We found that Ty elements and one other insertion were deleted by mitotic gene conversion less frequently than point mutations at the same loci. One non-Ty insertion similar in size to Ty, however, did not show this bias. Mitotic conversion events deleting insertions were more frequently associated with crossing over than those deleting point mutations. In meiosis, conversion events duplicating the element were more common than those that deleted the element for one of the loci (HIS4) examined.


Sign in / Sign up

Export Citation Format

Share Document