scholarly journals THE EFFECT OF AN EXPERIMENTAL BOTTLENECK UPON QUANTITATIVE GENETIC VARIATION IN THE HOUSEFLY

Genetics ◽  
1986 ◽  
Vol 114 (4) ◽  
pp. 1191-1211 ◽  
Author(s):  
Edwin H Bryant ◽  
Steven A McCommas ◽  
Lisa M Combs

ABSTRACT Effects of a population bottleneck (founder-flush cycle) upon quantitative genetic variation of morphometric traits were examined in replicated experimental lines of the housefly founded with one, four or 16 pairs of flies. Heritability and additive genetic variances for eight morphometric traits generally increased as a result of the bottleneck, but the pattern of increase among bottleneck sizes differed among traits. Principal axes of the additive genetic correlation matrix for the control line yielded two suites of traits, one associated with general body size and another set largely independent of body size. In the former set containing five of the traits, additive genetic variance was greatest in the bottleneck size of four pairs, whereas in the latter set of two traits the largest additive genetic variance occurred in the smallest bottleneck size of one pair. One trait exhibited changes in additive genetic variance intermediate between these two major responses. These results were inconsistent with models of additive effects of alleles within loci or of additive effects among loci. An observed decline in viability measures and body size in the bottleneck lines also indicated that there was nonadditivity of allelic effects for these traits. Several possible nonadditive models were explored that increased additive genetic variance as a result of a bottleneck. These included a model with complete dominance, a model with overdominance and a model incorporating multiplicative epistasis.

Genetics ◽  
1992 ◽  
Vol 131 (3) ◽  
pp. 693-700 ◽  
Author(s):  
P D Keightley ◽  
W G Hill

Abstract To measure the amount of new genetic variation in 6-week weight of mice arising each generation from mutation, selection lines derived from an initially inbred strain were maintained for 25 generations. An analysis using an animal model with restricted maximum likelihood was applied to estimate a mutational genetic component of variance for the infinitesimal model of many genes of small effect. Assuming that the inbred base population was at a mutation-drift equilibrium, it is estimated that the heritability for body size has increased by 1.0% per generation, with lower and upper confidence limits of 0.6% and 1.6%, respectively. A model which includes a mutational genetic component of variance fits the data much better than one involving only base population genetic variance. A model with no genetic component fits the data very poorly. An environmental covariance of body size of mother and offspring was included in the model and accounts for 10% of the variance. By using information only from the observed response to selection, the estimated increase in heritability from mutation is 0.3% per generation. These values are higher than published estimates for the increase in variance from spontaneous mutations in bristle traits of Drosophila, for which there are extensive data, but similar to estimates for various skeletal traits in mice.


Genetics ◽  
1974 ◽  
Vol 76 (3) ◽  
pp. 537-549
Author(s):  
Gunther Schlager

ABSTRACT Response to two-way selection for systolic blood pressure was immediate and continuous for about eight generations. In the twelfth generation, the High males differed from the Low males by 38 mmHG; the females differed by 39 mmHg. There was little overlap between the two lines and they were statistically significant from each other and from the Random control line. There appeared to be no more additive genetic variance in the eleventh and twelfth generations. Causes for the cessation of response are explored. This is probably due to a combination of natural selection acting to reduce litter sizes in the Low line, a higher incidence of sudden deaths in the High line, and loss of favorable alleles as both selection lines went through a population bottleneck in the ninth generation.—In the eleventh generation, the selected lines were used to produce F1, F2, and backcross generations. A genetic analysis yielded significant additive and dominance components in the inheritance of systolic blood pressure.


2018 ◽  
Vol 285 (1886) ◽  
pp. 20181374 ◽  
Author(s):  
Evatt Chirgwin ◽  
Dustin J. Marshall ◽  
Carla M. Sgrò ◽  
Keyne Monro

Parental environments are regularly shown to alter the mean fitness of offspring, but their impacts on the genetic variation for fitness, which predicts adaptive capacity and is also measured on offspring, are unclear. Consequently, how parental environments mediate adaptation to environmental stressors, like those accompanying global change, is largely unknown. Here, using an ecologically important marine tubeworm in a quantitative-genetic breeding design, we tested how parental exposure to projected ocean warming alters the mean survival, and genetic variation for survival, of offspring during their most vulnerable life stage under current and projected temperatures. Offspring survival was higher when parent and offspring temperatures matched. Across offspring temperatures, parental exposure to warming altered the distribution of additive genetic variance for survival, making it covary across current and projected temperatures in a way that may aid adaptation to future warming. Parental exposure to warming also amplified nonadditive genetic variance for survival, suggesting that compatibilities between parental genomes may grow increasingly important under future warming. Our study shows that parental environments potentially have broader-ranging effects on adaptive capacity than currently appreciated, not only mitigating the negative impacts of global change but also reshaping the raw fuel for evolutionary responses to it.


1999 ◽  
Vol 133 (4) ◽  
pp. 371-377 ◽  
Author(s):  
X. G. ZHANG ◽  
R. S. JESSOP ◽  
F. ELLISON

Root re-growth, following aluminium (Al) stress, has been used as an indicator of Al stress tolerance. Genetic variation in root re-growth characteristics among eight triticale genotypes was investigated by a diallel analysis. Highly significant variation due to both general combining ability (GCA) effects and specific combining ability (SCA) effects indicated that both additive effects and non-additive effects were important in explaining the genetic variation for Al tolerance. The high estimates of heritability and the predictability ratio for root re-growth revealed the preponderance of additive genetic variance in the inheritance of Al tolerance. Differences in patterns of GCA effects and SCA effects among the parents provided strong evidence that the genetic control of variation for Al tolerance as assessed by root re-growth was a complex polygenic system. Three Al-tolerant genotypes, Tahara, Abacus, and 19th ITSN 70–4, were found to be the best general combiners for larger root re-growth, and they could be used in hybridization programmes to improve Al stress tolerance by following a simple pedigree method of selective breeding.


2014 ◽  
Vol 369 (1649) ◽  
pp. 20130255 ◽  
Author(s):  
Geir H. Bolstad ◽  
Thomas F. Hansen ◽  
Christophe Pélabon ◽  
Mohsen Falahati-Anbaran ◽  
Rocío Pérez-Barrales ◽  
...  

If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.


2004 ◽  
Vol 83 (2) ◽  
pp. 121-132 ◽  
Author(s):  
WILLIAM G. HILL ◽  
XU-SHENG ZHANG

In standard models of quantitative traits, genotypes are assumed to differ in mean but not variance of the trait. Here we consider directional selection for a quantitative trait for which genotypes also confer differences in variability, viewed either as differences in residual phenotypic variance when individual loci are concerned or as differences in environmental variability when the whole genome is considered. At an individual locus with additive effects, the selective value of the increasing allele is given by ia/σ+½ixb/σ2, where i is the selection intensity, x is the standardized truncation point, σ2 is the phenotypic variance, and a/σ and b/σ2 are the standardized differences in mean and variance respectively between genotypes at the locus. Assuming additive effects on mean and variance across loci, the response to selection on phenotype in mean is iσAm2/σ+½ixcovAmv/σ2 and in variance is icovAmv/σ+½ixσ2Av/σ2, where σAm2 is the (usual) additive genetic variance of effects of genes on the mean, σ2Av is the corresponding additive genetic variance of their effects on the variance, and covAmv is the additive genetic covariance of their effects. Changes in variance also have to be corrected for any changes due to gene frequency change and for the Bulmer effect, and relevant formulae are given. It is shown that effects on variance are likely to be greatest when selection is intense and when selection is on individual phenotype or within family deviation rather than on family mean performance. The evidence for and implications of such variability in variance are discussed.


2019 ◽  
Author(s):  
WU Blanckenhorn ◽  
V Llaurens ◽  
C Reim ◽  
Y Teuschl ◽  
E Postma

SUMMARYThe evolutionary potential of organisms depends on the presence of sufficient genetic variation for traits subject to selection, as well as on the genetic covariances among them. While genetic variation ultimately derives from mutation, theory predicts the depletion of genetic (co)variation under consistent directional or stabilizing selection in natural populations. We estimated and compared additive genetic (co)variances for several standard life history traits, including some for which this has never been assessed, before and after 24 generations of artificial selection on male size in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae) using a series of standard half-sib breeding experiments. As predicted, genetic variances (VA), heritabilities (h2) and evolvabilities (IA) of body size, development time, first clutch size, and female age at first clutch were lower after selection. As independent selection lines were crossed prior to testing, we can rule out that this reduction is due to genetic drift. In contrast to the variances, and against expectation, the additive genetic correlations between the sexes for development time and body size remained strong and positive (rA = 0.8–0.9), while the genetic correlation between these traits within the sexes tended to strengthen (but not significantly so). Our study documents that the effect of selection on genetic variance is predictable, whereas that on genetic correlations is not.


Genetics ◽  
1986 ◽  
Vol 114 (4) ◽  
pp. 1213-1223
Author(s):  
Edwin H Bryant ◽  
Lisa M Combs ◽  
Steven A McCommas

ABSTRACT Differentiation in morphometric traits among experimental populations of the housefly subjected to an experimental bottleneck was examined for replicate lines founded with one, four or 16 pairs of flies. Differentiation among lines within a bottleneck size was significantly greater than predicted by drift in relation to the additive genetic variation for these traits within the founding population. Two models of nonadditive genetic variance were investigated to interpret these results, one involving dominance of allelic effects within loci and another incorporating multiplicative epistasis. Both models generated more variation among lines as a direct result of sampling during the bottleneck than predicted by a model with additive gene action. The pattern of differentiation among our experimental lines in relation to these models conformed more to the model incorporating epistasis. Nevertheless, it may be difficult to distinguish differentiation among lines occurring during a bottleneck as a result of nonadditive gene action from that caused by diversifying selection among lines after the bottleneck.


2016 ◽  
Vol 6 (12) ◽  
pp. 3903-3911 ◽  
Author(s):  
Robert M Griffin ◽  
Holger Schielzeth ◽  
Urban Friberg

Abstract Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.


1981 ◽  
Vol 37 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Trudy F. C. Mackay

SUMMARYIn order to assess the relationship between genetic and environmental variability, a large natural population of Drosophila melanogaster was replicated as eight subpopulations, which were subjected to four different patterns of environmental variation. The environmental variable imposed was presence of 15% ethanol in the culture medium. Experimental treatments of the populations were intended to simulate constant environmental conditions, spatial heterogeneity in the environment, and two patterns of temporal environmental variation with different periodicity (long- and short-term temporal variation). Additive genetic and phenotypic variation in sternopleural and abdominal chaeta number, and body weight, were estimated in two successive years, and measurements were taken of the genotype–environment correlation of body weight and sternopleural bristle score with medium type.Additive genetic variance of sternopleural chaeta number and of body weight was significantly greater in the three populations experiencing environmental heterogeneity than in the control population, but additive genetic variance of abdominal bristle score was not clearly affected by exposing populations to varying environments. Temporal environmental variation was equally, if not more, efficient in promoting the maintenance of genetic variation than spatial heterogeneity, but the cycle length of the temporal variation was of no consequence. Specific genotype–environment interactions were not present, therefore adaptation to heterogeneous environments is by selection of heterozygosity per se, rather than by differential survival of genotypes in the alternate niches.


Sign in / Sign up

Export Citation Format

Share Document