scholarly journals Genetic analysis of a meiotic recombination hotspot on chromosome III of Saccharomyces cerevisiae.

Genetics ◽  
1991 ◽  
Vol 128 (4) ◽  
pp. 717-727 ◽  
Author(s):  
L S Symington ◽  
A Brown ◽  
S G Oliver ◽  
P Greenwell ◽  
T D Petes

Abstract In a previous study, we analyzed meiotic recombination events that occurred in the 22-kb region (LEU2 to CEN3) of chromosome III of Saccharomyces cerevisiae. We found one region with an enhanced level of crossovers (a hotspot) and one region with a depressed level of crossovers. In this study, we show that about one-third of the crossovers that occur between LEU2 and CEN3 are initiated in a 1.3-kb region located approximately 6 kb from the centromere. Both crossovers and gene conversion events are initiated at this site. Events initiated at this position can be resolved as crossovers in regions located either centromere-distally or centromere-proximally from the initiation site.

Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Stuart J Haring ◽  
George R Halley ◽  
Alex J Jones ◽  
Robert E Malone

Abstract This study addresses three questions about the properties of recombination hotspots in Saccharomyces cerevisiae: How much DNA is required for double-strand-break (DSB) site recognition? Do naturally occurring DSB sites compete with each other in meiotic recombination? What role does the sequence located at the sites of DSBs play? In S. cerevisiae, the HIS2 meiotic recombination hotspot displays a high level of gene conversion, a 3′-to-5′ conversion gradient, and two DSB sites located ∼550 bp apart. Previous studies of hotspots, including HIS2, suggest that global chromosome structure plays a significant role in recombination activity, raising the question of how much DNA is sufficient for hotspot activity. We find that 11.5 kbp of the HIS2 region is sufficient to partially restore gene conversion and both DSBs when moved to another yeast chromosome. Using a variety of different constructs, studies of hotspots have indicated that DSB sites compete with one another for DSB formation. The two naturally occurring DSBs at HIS2 afforded us the opportunity to examine whether or not competition occurs between these native DSB sites. Small deletions of DNA at each DSB site affect only that site; analyses of these deletions show no competition occurring in cis or in trans, indicating that DSB formation at each site at HIS2 is independent. These small deletions significantly affect the frequency of DSB formation at the sites, indicating that the DNA sequence located at a DSB site can play an important role in recombination initiation.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 175-188
Author(s):  
A J Rattray ◽  
L S Symington

Abstract In a previous study, meiotic recombination events were monitored in the 22-kb LEU2 to CEN3 region of chromosome III of Saccharomyces cerevisiae. One region (the hotspot) was shown to have an enhanced level of both gene conversion events and reciprocal crossovers, whereas a second region (the coldspot) was shown to have a depressed level of both types of recombination events. In this study we have analyzed the effects of a replication origin, ARS307, located about 2 kb centromere proximal to the hotspot region, on the distribution of meiotic recombination events. We find that a deletion of this origin results in a reduction of both gene conversions and reciprocal crossovers in the hotspot region, and that a 200-bp fragment of this ARS element can stimulate both types of recombination events when relocated to the coldspot region. Although the magnitude of stimulation of these events is similar in both orientations, whether the ARS is functional or not, the distribution of events is dependent upon the orientation of the element.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Ke Zhang ◽  
Xue-Chang Wu ◽  
Dao-Qiong Zheng ◽  
Thomas D. Petes

ABSTRACT Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific double-stranded DNA breaks throughout the genome. Although there were between 300 and 400 regions of the genome with high levels of recombination (hot spots) observed at each temperature, only about 20% of these hot spots were found to have occurred independently of the temperature. In S. cerevisiae , regions near the telomeres and centromeres tend to have low levels of meiotic recombination. This tendency was observed in cells sporulated at 14°C and 30°C, but not at 37°C. Thus, the temperature of sporulation in yeast affects some global property of chromosome structure relevant to meiotic recombination. Using single-nucleotide polymorphism (SNP)-specific whole-genome microarrays, we also examined crossovers and their associated gene conversion events as well as gene conversion events that were unassociated with crossovers in all four spores of tetrads obtained by sporulation of diploids at 14°C, 30°C, or 37°C. Although tetrads from cells sporulated at 30°C had slightly (20%) more crossovers than those derived from cells sporulated at the other two temperatures, spore viability was good at all three temperatures. Thus, despite temperature-induced variation in the genetic maps, yeast cells produce viable haploid products at a wide variety of sporulation temperatures. IMPORTANCE In the yeast Saccharomyces cerevisiae , recombination is usually studied in cells that undergo meiosis at 25°C or 30°C. In a genome-wide analysis, we showed that the locations of genomic regions with high and low levels of meiotic recombination (hot spots and cold spots, respectively) differed dramatically in cells sporulated at 14°C, 30°C, and 37°C. Thus, in yeast, and likely in other non-warm-blooded organisms, genetic maps are strongly affected by the environment.


Genetics ◽  
1978 ◽  
Vol 89 (4) ◽  
pp. 667-684
Author(s):  
Michael I Riley ◽  
T R Manney

ABSTRACT Meiotic segregation of several genes has been studied in tetraploid strains that are trisomic for chromosome III. The segregation data were compared to a computer simulation that assumes trivalent pairing of homologues involved in exchanges, followed by nonpreferential segregation. Trivalent pairing was characterized by higher frequencies of exchange as compared to bivalent pairing, and by the presence of spores resulting from at least double crossovers involving all three homologues. Trivalent segregation was characterized by a unique recombinant class. The strong interference normally exhibited in diploid meiotic recombination was not evident from the frequency of double crossovers in these strains.


Genetics ◽  
1988 ◽  
Vol 119 (3) ◽  
pp. 491-497
Author(s):  
A S Ponticelli ◽  
E P Sena ◽  
G R Smith

Abstract The ade6-M26 mutation of Schizosaccharomyces pombe has previously been reported to stimulate ade6 intragenic meiotic recombination. We report here that the ade6-M26 mutation is a single G----T nucleotide change, that M26 stimulated recombination within ade6 but not at other distinct loci, and that M26 stimulated meiotic but not mitotic recombination. In addition, M26 stimulated recombination within ade6 when M26 is homozygous; this result demonstrates that a base-pair mismatch at the M26 site was not required for the stimulation. These results are consistent with the ade6-M26 mutation creating a meiotic recombination initiation site.


1988 ◽  
Vol 8 (7) ◽  
pp. 2942-2954
Author(s):  
M Kupiec ◽  
T D Petes

We have measured the frequency of meiotic recombination between marked Ty elements in the Saccharomyces cerevisiae genome. These recombination events were usually nonreciprocal (gene conversions) and sometimes involved nonhomologous chromosomes. The frequency of ectopic gene conversion among Ty elements appeared lower than expected on the basis of previous studies of recombination between artificially constructed repeats. The conversion events involved either a subset of the total Ty elements in the genome or the conversion tract was restricted to a small region of the Ty element. In addition, the observed conversion events were very infrequently associated with reciprocal exchange.


2017 ◽  
Vol 1 (4) ◽  
pp. 319-331
Author(s):  
Mahmut C. Ergören ◽  
Rita Neumann ◽  
Ingrid Berg ◽  
Alec J. Jeffreys

Abstract PRDM9 plays a key role in specifying meiotic recombination hotspot locations in humans. To examine the effects of both the 13-bp sequence motif (cis-regulator) and trans-regulator PRDM9 on crossover frequencies and distribution, we studied Hotspot DA. This hotspot had the motif at its centre, and a single nucleotide polymorphism (SNP) that disrupts the motif. The crossover frequency showed Hotspot DA to be a regular hotspot with an average crossover rate (~8 X10-4) among hotspots assayed on autosomes. Our results show that, comparing the rates and distributions of sperm crossover events between donors heterozygous for the disrupting SNP showed that there was a huge asymmetry between the two alleles, with the derived, motif-disrupting allele completely suppressing hotspot activity. Intensive biased gene conversion, both in to crossovers and noncrossovers, has been found at Hotspot DA. Biased gene conversion that influences crossover and non-crossover hotspot activity correlates with PRDM9 allele A. In Hotspot DA, the lifetime of the hotspot mostly depends on the cis-regulatory disrupting SNP, and on the trans-regulatory factor PRDM9. Overall, our observation showed that Hotspot DA is the only evidence for human crossover hotspot regulation by a very strong cisregulatory disrupting SNP.


Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 113-123 ◽  
Author(s):  
P Detloff ◽  
M A White ◽  
T D Petes

Abstract Heteroduplexes formed between genes on homologous chromosomes are intermediates in meiotic recombination. In the HIS4 gene of Saccharomyces cerevisiae, most mutant alleles at the 5' end of the gene have a higher rate of meiotic recombination (gene conversion) than mutant alleles at the 3' end of the gene. Such gradients are usually interpreted as indicating a higher frequency of heteroduplex formation at the high conversion end of the gene. We present evidence indicating that the gradient of conversion at HIS4 primarily reflects the direction of mismatch repair rather than the frequency of heteroduplex formation. We also identify a site located between the 5' end of HIS4 and the 3' end of BIK1 that stimulates heteroduplex formation at HIS4 and BIK1.


1984 ◽  
Vol 4 (4) ◽  
pp. 703-711
Author(s):  
G S Roeder ◽  
M Smith ◽  
E J Lambie

In this paper, we describe the movement of a genetically marked Saccharomyces cerevisiae transposon. Ty912(URA3), to new sites in the S. cerevisiae genome. Ty912 is an element present at the HIS4 locus in the his4-912 mutant. To detect movement of Ty912, this element has been genetically marked with the S. cerevisiae URA3 gene. Movement of Ty912(URA3) occurs by recombination between the marked element and homologous Ty elements elsewhere in the S. cerevisiae genome. Ty912(URA3) recombines most often with elements near the HIS4 locus on chromosome III, less often with Ty elements elsewhere on chromosome III, and least often with Ty elements on other chromosomes. These recombination events result in changes in the number of Ty elements present in the cell and in duplications and deletions of unique sequence DNA.


Sign in / Sign up

Export Citation Format

Share Document