scholarly journals Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae.

Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 791-801 ◽  
Author(s):  
J G Na ◽  
I Pinto ◽  
M Hampsey

Abstract We have identified the sua5 locus as a suppressor of an aberrant ATG codon located in the leader region of the cyc1 gene. The sua5-1 allele enhances the iso-1-cytochrome c steady state level in the cyc1-1019 mutant from 2% to approximately 60% of normal (Cyc+) and also confers a marked slow growth (Slg-) phenotype. Suppression is not a consequence of altered transcription initiation at the cyc1 locus. The SUA5 wild-type gene was isolated and sequenced, revealing an open reading frame (ORF) encoding a potential protein of 46,537 Da. SUA5 transcript analyses were consistent with expression of the predicted ORF and Sua5 antisera detected a protein with an apparent molecular mass of 44 kDa. SUA5 was mapped to chromosome VII, immediately adjacent to the PMR1 gene. Hybridization analysis revealed the presence of a related gene on chromosome XII. Neither the SUA5 DNA sequence nor deduced amino acid sequence showed homology to any sequences in the data banks. Disruption of SUA5 conferred the same Cyc+ and Slg- phenotypes as the sua5-1 suppressor, which is the result of a missense mutation, encoding a Ser107----Phe replacement. In addition, sua5 null mutants lack cytochrome a.a3 and fail to grow on lactate or glycerol medium. These results define SUA5 as a new gene encoding a novel protein that is necessary for normal cell growth.

Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
T Watanabe ◽  
D R Kankel

Abstract Previous genetic studies have shown that wild-type function of the l(1)ogre (lethal (1) optic ganglion reduced) locus is essential for the generation and/or maintenance of the postembryonic neuroblasts including those from which the optic lobe is descended. In the present study molecular isolation and characterization of the l(1)ogre locus was carried out to study the structure and expression of this gene in order to gain information about the nature of l(1)ogre function and its relevance to the development of the central nervous system. About 70 kilobases (kb) of genomic DNA were isolated that spanned the region where l(1)ogre was known to reside. Southern analysis of a l(1)ogre mutation and subsequent P element-mediated DNA transformation mapped the l(1)ogre+ function within a genomic fragment of 12.5 kb. Northern analyses showed that a 2.9-kb message transcribed from this 12.5-kb region represented l(1)ogre. A 2.15-kb portion of a corresponding cDNA clone was sequenced. An open reading frame (ORF) of 1,086 base paris was found, and a protein sequence of 362 amino acids with one highly hydrophobic segment was deduced from conceptual translation of this ORF.


Gene ◽  
1996 ◽  
Vol 174 (2) ◽  
pp. 221-224 ◽  
Author(s):  
Travis Henry ◽  
Brian Kliewer ◽  
Robert Palmatier ◽  
Joseph S. Ulphani ◽  
Joe D. Beckmann

2000 ◽  
Vol 66 (12) ◽  
pp. 5480-5483 ◽  
Author(s):  
Sean S. Dineen ◽  
Marite Bradshaw ◽  
Eric A. Johnson

ABSTRACT Boticin B is a heat-stable bacteriocin produced byClostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18.8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene,btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing theHindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.


Gene ◽  
1990 ◽  
Vol 91 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Judit Castella-Escola ◽  
David M. Ojcius ◽  
Philippe LeBoulch ◽  
Virginie Joulin ◽  
Yves Blouquit ◽  
...  

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 108
Author(s):  
Wang Liu ◽  
Xiaowei Zheng ◽  
Xin Dai ◽  
Zhenfeng Zhang ◽  
Wenyan Zhang ◽  
...  

Viruses are far more abundant than cellular microorganisms in the marine ecosystem. However, very few viruses have so far been isolated from marine sediments, especially hydrothermal vent sediments, hindering the understanding of the biology and ecological functions of these tiny organisms. Here, we report the isolation and characterization of a temperate bacteriophage, named PVJ1, which infects Psychrobacillus from a hydrothermal vent field in Okinawa Trough. PVJ1 belongs to the Myoviridae family of the order Caudovirales. The tailed phage possesses a 53,187 bp linear dsDNA genome, with 84 ORFs encoding structural proteins, genome replication, host lysis, etc. in a modular pattern. The phage genome is integrated into the host chromosome near the 3′-end of deoD, a gene encoding purine nucleoside phosphorylase (PNP). The phage integration does not appear to disrupt the function of PNP. The phage DNA is packaged by the headful mechanism. Release of PVJ1 from the host cell was drastically enhanced by treatment with mitomycin C. Phages encoding an MCP sharing significant similarity (≥70% identical amino acids) with that of PVJ1 are widespread in diverse environments, including marine and freshwater sediments, soils, artificial ecosystems, and animal intestines, and primarily infect Firmicutes. These results are valuable to the understanding of the lifestyle and host interactions of bacterial viruses at the bottom of the ocean.


Sign in / Sign up

Export Citation Format

Share Document