scholarly journals Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: expression of a ribosomal protein gene family.

Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 719-730
Author(s):  
A G Paulovich ◽  
J R Thompson ◽  
J C Larkin ◽  
Z Li ◽  
J L Woolford

Abstract The Saccharomyces cerevisiae CRY1 gene encodes the 40S ribosomal subunit protein rp59 and confers sensitivity to the protein synthesis inhibitor cryptopleurine. A yeast strain containing the cry1-delta 1::URA3 null allele is viable, cryptopleurine sensitive (CryS), and expresses rp59 mRNA, suggesting that there is a second functional CRY gene. The CRY2 gene has been isolated from a yeast genomic library cloned in bacteriophage lambda, using a CRY1 DNA probe. The DNA sequence of the CRY2 gene contains an open reading frame encoding ribosomal protein 59 that differs at five residues from rp59 encoded by the CRY1 gene. The CRY2 gene was mapped to the left arm of chromosome X, centromere-proximal to cdc6 and immediately adjacent to ribosomal protein genes RPS24A and RPL46. Ribosomal protein 59 is an essential protein; upon sporulation of a diploid doubly heterozygous for cry1-delta 2::TRP1 cry2-delta 1::LEU2 null alleles, no spore clones containing both null alleles were recovered. Several results indicate that CRY2 is expressed, but at lower levels than CRY1: (1) Introduction of CRY2 on high copy plasmids into CryR yeast of genotype cry1 CRY2 confers a CryS phenotype. Transformation of these CryR yeast with CRY2 on a low copy CEN plasmid does not confer a CryS phenotype. (2) Haploids containing the cry1-delta 2::TRP1 null allele have a deficit of 40S ribosomal subunits, but cry2-delta 1::LEU2 strains have wild-type amounts of 40S ribosomal subunits. (3) CRY2 mRNA is present at lower levels than CRY1 mRNA. (4) Higher levels of beta-galactosidase are expressed from a CRY1-lacZ gene fusion than from a CRY2-lacZ gene fusion. Mutations that alter or eliminate the last amino acid of rp59 encoded by either CRY1 or CRY2 result in resistance to cryptopleurine. Because CRY2 (and cry2) is expressed at lower levels than CRY1 (and cry1), the CryR phenotype of cry2 mutants is only expressed in strains containing a cry1-delta null allele.

Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1687-1699
Author(s):  
Jesús de la Cruz ◽  
Thierry Lacombe ◽  
Olivier Deloche ◽  
Patrick Linder ◽  
Dieter Kressler

Abstract Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele.


1993 ◽  
Vol 13 (5) ◽  
pp. 2835-2845
Author(s):  
M Deshmukh ◽  
Y F Tsay ◽  
A G Paulovich ◽  
J L Woolford

Ribosomal protein L1 from Saccharomyces cerevisiae binds 5S rRNA and can be released from intact 60S ribosomal subunits as an L1-5S ribonucleoprotein (RNP) particle. To understand the nature of the interaction between L1 and 5S rRNA and to assess the role of L1 in ribosome assembly and function, we cloned the RPL1 gene encoding L1. We have shown that RPL1 is an essential single-copy gene. A conditional null mutant in which the only copy of RPL1 is under control of the repressible GAL1 promoter was constructed. Depletion of L1 causes instability of newly synthesized 5S rRNA in vivo. Cells depleted of L1 no longer assemble 60S ribosomal subunits, indicating that L1 is required for assembly of stable 60S ribosomal subunits but not 40S ribosomal subunits. An L1-5S RNP particle not associated with ribosomal particles was detected by coimmunoprecipitation of L1 and 5S rRNA. This pool of L1-5S RNP remained stable even upon cessation of 60S ribosomal subunit assembly by depletion of another ribosomal protein, L16. Preliminary results suggest that transcription of RPL1 is not autogenously regulated by L1.


1983 ◽  
Vol 3 (2) ◽  
pp. 190-197
Author(s):  
J J Madjar ◽  
M Frahm ◽  
S McGill ◽  
D J Roufa

Four two-dimensional polyacrylamide gel electrophoresis systems were used to identify 78 Chinese hamster cell ribosomal proteins by the uniform nomenclature based on rat liver ribosomal proteins. The 40S ribosomal subunit protein affected by Chinese hamster ovary (CHO) cell one-step emetine resistance mutations is designated S14 in the standard nomenclature. To seek unambiguous genetic evidence for a cause and effect relationship between CHO cell emetine resistance and mutations in the S14 gene, we mutagenized a one-step CHO cell mutant and isolated second-step mutant clones resistant to 10-fold-higher concentrations of emetine. All of the highly resistant, two-step CHO cell mutants obtained displayed additional alterations in ribosomal protein S14. Hybridization complementation tests revealed that the two-step CHO cell emetine resistance mutants were members of the same complementation group defined by one-step CHO cell mutants, EmtB. Two-step mutants obtained from a Chinese hamster lung cell emetine-resistant clone belong to the EmtA complementation group. The two-step and EmtB mutants elaborated 40S ribosomal subunits, which dissociated to 32S and 40S core particles in buffers containing 0.5 M KCl at 4 degrees C. In contrast, 40S ribosomal subunits purified from all EmtA, one-step EmtB EmtC mutants, and wild-type CHO and lung cells were stable at this temperature in buffers containing substantially higher concentrations of salt. Thus, two-step emtB mutations affect the structure of S14 protein directly and the stability of the 40S ribosomal subunit indirectly.


1990 ◽  
Vol 10 (10) ◽  
pp. 5235-5243 ◽  
Author(s):  
D M Baronas-Lowell ◽  
J R Warner

In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5235-5243
Author(s):  
D M Baronas-Lowell ◽  
J R Warner

In the yeast Saccharomyces cerevisiae, L30 is one of many ribosomal proteins that is encoded by two functional genes. We have cloned and sequenced RPL30B, which shows strong homology to RPL30A. Use of mRNA as a template for a polymerase chain reaction demonstrated that RPL30B contains an intron in its 5' untranslated region. This intron has an unusual 5' splice site, C/GUAUGU. The genomic copies of RPL30A and RPL30B were disrupted by homologous recombination. Growth rates, primer extension, and two-dimensional ribosomal protein analyses of these disruption mutants suggested that RPL30A is responsible for the majority of L30 production. Surprisingly, meiosis of a diploid strain carrying one disrupted RPL30A and one disrupted RPL30B yielded four viable spores. Ribosomes from haploid cells carrying both disrupted genes had no detectable L30, yet such cells grew with a doubling time only 30% longer than that of wild-type cells. Furthermore, depletion of L30 did not alter the ratio of 60S to 40S ribosomal subunits, suggesting that there is no serious effect on the assembly of 60S subunits. Polysome profiles, however, suggest that the absence of L30 leads to the formation of stalled translation initiation complexes.


1997 ◽  
Vol 17 (12) ◽  
pp. 7283-7294 ◽  
Author(s):  
D Kressler ◽  
J de la Cruz ◽  
M Rojo ◽  
P Linder

A previously uncharacterized Saccharomyces cerevisiae gene, FAL1, was found by sequence comparison as a homolog of the eukaryotic translation initiation factor 4A (eIF4A). Fal1p has 55% identity and 73% similarity on the amino acid level to yeast eIF4A, the prototype of ATP-dependent RNA helicases of the DEAD-box protein family. Although clearly grouped in the eIF4A subfamily, the essential Fal1p displays a different subcellular function and localization. An HA epitope-tagged Fal1p is localized predominantly in the nucleolus. Polysome analyses in a temperature-sensitive fal1-1 mutant and a Fal1p-depleted strain reveal a decrease in the number of 40S ribosomal subunits. Furthermore, these strains are hypersensitive to the aminoglycoside antibiotics paromomycin and neomycin. Pulse-chase labeling of pre-rRNA and steady-state-level analysis of pre-rRNAs and mature rRNAs by Northern hybridization and primer extension in the Fal1p-depleted strain show that Fal1p is required for pre-rRNA processing at sites A0, A1, and A2. Consequently, depletion of Fal1p leads to decreased 18S rRNA levels and to an overall deficit in 40S ribosomal subunits. Together, these results implicate Fal1p in the 18S rRNA maturation pathway rather than in translation initiation.


1997 ◽  
Vol 17 (4) ◽  
pp. 1959-1965 ◽  
Author(s):  
J Vilardell ◽  
J R Warner

Ribosomal protein L32 of Saccharomyces cerevisiae binds to and regulates the splicing and the translation of the transcript of its own gene. Selecting for mutants deficient in the regulation of splicing, we have identified a mutant form of L32 that no longer binds to the transcript of RPL32 and therefore does not regulate its splicing. The mutation is the deletion of an isoleucine residue from a highly conserved hydrophobic domain near the middle of L32. The mutant protein supports growth, at a reduced rate, and is found at normal levels in mature ribosomes. However, in cells homozygous for the mutant gene, the rate of processing of the ribosomal RNA component of the 60S ribosomal subunit is severely reduced, leading to an insufficiency of 60S subunits. L32 must be considered a remarkable protein. Composed of only 104 amino acids, it appears to interact with three distinct RNA molecules to influence three different elements of RNA processing and function in three different locations of the cell: the processing of pre-rRNA in the nucleolus, the splicing of the RPL32 transcript in the nucleus, and the translation of the spliced RPL32 mRNA in the cytoplasm.


2009 ◽  
Vol 8 (11) ◽  
pp. 1792-1802 ◽  
Author(s):  
Lixia Jia ◽  
Jasvinder Kaur ◽  
Rosemary A. Stuart

ABSTRACT The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map the Saccharomyces cerevisiae Oxa1-ribosome interface, and we demonstrate here a close association of Oxa1 and the large ribosomal subunit protein, MrpL40. Evidence to indicate that a close physical and functional relationship exists between MrpL40 and another large ribosomal protein, the Mrp20/L23 protein, is also provided. MrpL40 shares sequence features with the bacterial ribosomal protein L24, which like Mrp20/L23 is known to be located adjacent to the ribosomal polypeptide exit site. We propose therefore that MrpL40 represents the Saccharomyces cerevisiae L24 homolog. MrpL40, like many mitochondrial ribosomal proteins, contains a C-terminal extension region that bears no similarity to the bacterial counterpart. We show that this C-terminal mitochondria-specific region is important for MrpL40's ability to support the synthesis of the correct complement of mitochondrially encoded proteins and their subsequent assembly into oxidative phosphorylation complexes.


1985 ◽  
Vol 5 (12) ◽  
pp. 3429-3435
Author(s):  
N Abovich ◽  
L Gritz ◽  
L Tung ◽  
M Rosbash

The Saccharomyces cerevisiae ribosomal protein rp51 is encoded by two interchangeable genes, RP51A and RP51B. We altered the RP51 gene dose by creating deletions of the RP51A or RP51B genes or both. Deletions of both genes led to spore inviability, indicating that rp51 is an essential ribosomal protein. From single deletion studies in haploid cells, we concluded that there was no intergenic dosage compensation at the level of mRNA abundance or mRNA utilization (translational efficiency), although phenotypic analysis had previously indicated a small compensation effect on growth rate. Similarly, deletions in diploid strains indicated that no strong mechanisms exist for intragenic dosage compensation; in all cases, a decreased dose of RP51 genes was characterized by a slow growth phenotype. A decreased dose of RP51 genes also led to insufficient amounts of 40S ribosomal subunits, as evidenced by a dramatic accumulation of excess 60S ribosomal subunits. We conclude that inhibition of 40S synthesis had little or no effect on the synthesis of the 60S subunit components. Addition of extra copies of rp51 genes led to extra rp51 protein synthesis. The additional rp51 protein was rapidly degraded. We propose that rp51 and perhaps many ribosomal proteins are normally oversynthesized, but the unassembled excess is degraded, and that the apparent compensation seen in haploids, i.e., the fact that the growth rate of mutant strains is less depressed than the actual reduction in mRNA, is a consequence of this excess which is spared from proteolysis under this circumstance.


Archaea ◽  
2008 ◽  
Vol 2 (3) ◽  
pp. 151-158 ◽  
Author(s):  
Andrea Ciammaruconi ◽  
Stefania Gorini ◽  
Paola Londei

We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18) that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.


Sign in / Sign up

Export Citation Format

Share Document