Aberrant splicing and transcription termination caused by P element insertion into the intron of a Drosophila gene.

Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 327-335 ◽  
Author(s):  
H Horowitz ◽  
C A Berg

Abstract Insertional mutagenesis screens using the P[lacZ, rosy+] (PZ) transposable element have provided thousands of mutant lines for analyzing genes of varied function in the fruitfly, Drosophila melanogaster. As have been observed with other P elements, many of the PZ-induced mutations result from insertion of the P element into the promoter or 5' untranslated regions of the affected gene. We document here a novel mechanism for mutagenesis by this element. We show that sequences present within the element direct aberrant splicing and termination events that produce a mRNA composed of 5' sequences from the mutated gene (in this case, pipsqueak) and 3' sequences from within the P[lacZ, rosy+] element. These truncated RNAs could yield proteins with dominant mutant effects.

Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 284-295 ◽  
Author(s):  
Trudy F. C. Mackay

Transposable elements constitute a significant fraction of the Drosophila melanogaster genome. The five families of moderately repeated transposable elements identified to date occupy dispersed and variable genomic locations, but have relatively constant copy numbers per individual. What effect to these elements have on the fitness of the individuals harboring them? Experimental evidence relating to this question is reviewed. The relevant data fall into two broad categories. The first involves the determination of the distribution of transposable elements in natural populations, by restriction mapping or in situ hybridization, and the comparison of the observed distribution with different theoretical expectations. The second approach is to study directly the effects of new transposable element-induced mutations on fitness. The P family of transposable elements is a particularly efficient mutagen, and the results of experiments in which initially P-free chromosomes are contaminated with P elements are discussed with regard to P-induced fitness mutations.Key words: transposable elements, Drosophila melanogaster, insertional mutagenesis, fitness, P element mutagenesis, hybrid dysgenesis.


1987 ◽  
Vol 7 (4) ◽  
pp. 1545-1548
Author(s):  
M R Kelley ◽  
S Kidd ◽  
R L Berg ◽  
M W Young

P elements move about the Drosophila melanogaster genome in a nonrandom fashion, preferring some chromosomal targets for insertion over others (J. C. J. Eeken, F. H. Sobels, V. Hyland, and A. P. Schalet, Mutat. Res. 150:261-275, 1985; W. R. Engels, Annu. Rev. Genet. 17:315-344, 1983; M. D. Golubovsky, Y. N. Ivanov, and M. M. Green, Proc. Natl. Acad. Sci. USA 74:2973-2975, 1977; M. J. Simmons and J. K. Lim, Proc. Natl. Acad. Sci. USA 77:6042-6046, 1980). Some of this specificity may be due to recognition of a particular DNA sequence in the target DNA; derivatives of an 8-base-pair consensus sequence are occupied by these transposable elements at many different chromosomal locations (K. O'Hare and G. M. Rubin, Cell 34:25-36, 1983). An additional level of specificity of P-element insertions is described in this paper. Of 14 mutations induced in the complex locus Notch by hybrid dysgenesis, 13 involved P-element insertions at or near the transcription start site of the gene. This clustering was not seen in other transposable element-induced mutations of Notch. DNA sequences homologous to the previously described consensus target for P-element insertion are not preferentially located in this region of the locus. The choice of a chromosomal site for integration appears to be based on more subtle variations in chromosome structure that are probably associated with activation or expression of the target gene.


1987 ◽  
Vol 7 (4) ◽  
pp. 1545-1548 ◽  
Author(s):  
M R Kelley ◽  
S Kidd ◽  
R L Berg ◽  
M W Young

P elements move about the Drosophila melanogaster genome in a nonrandom fashion, preferring some chromosomal targets for insertion over others (J. C. J. Eeken, F. H. Sobels, V. Hyland, and A. P. Schalet, Mutat. Res. 150:261-275, 1985; W. R. Engels, Annu. Rev. Genet. 17:315-344, 1983; M. D. Golubovsky, Y. N. Ivanov, and M. M. Green, Proc. Natl. Acad. Sci. USA 74:2973-2975, 1977; M. J. Simmons and J. K. Lim, Proc. Natl. Acad. Sci. USA 77:6042-6046, 1980). Some of this specificity may be due to recognition of a particular DNA sequence in the target DNA; derivatives of an 8-base-pair consensus sequence are occupied by these transposable elements at many different chromosomal locations (K. O'Hare and G. M. Rubin, Cell 34:25-36, 1983). An additional level of specificity of P-element insertions is described in this paper. Of 14 mutations induced in the complex locus Notch by hybrid dysgenesis, 13 involved P-element insertions at or near the transcription start site of the gene. This clustering was not seen in other transposable element-induced mutations of Notch. DNA sequences homologous to the previously described consensus target for P-element insertion are not preferentially located in this region of the locus. The choice of a chromosomal site for integration appears to be based on more subtle variations in chromosome structure that are probably associated with activation or expression of the target gene.


Genetics ◽  
1995 ◽  
Vol 141 (3) ◽  
pp. 1061-1074 ◽  
Author(s):  
R R Roseman ◽  
E A Johnson ◽  
C K Rodesch ◽  
M Bjerke ◽  
R N Nagoshi ◽  
...  

Abstract P elements are widely used as insertional mutagens to tag genes, facilitating molecular cloning and analyses. We modified a P element so that it carried two copies of the suppressor of Hairy-wing [su(Hw)] binding regions isolated from the gypsy transposable element. This transposon was mobilized, and the genetic consequences of its insertion were analyzed. Gene expression can be altered by the su(Hw) protein as a result of blocking the interaction between enhancer/silencer elements and their promoter. These effects can occur over long distances and are general. Therefore, a composite transposon (SUPor-P for suppressor-P element) combines the mutagenic efficacy of the gypsy element with the controllable transposition of P elements. We show that, compared to standard P elements, this composite transposon causes an expanded repertoire of mutations and produces alleles that are suppressed by su(Hw) mutations. The large number of heterochromatic insertions obtained is unusual compared to other insertional mutagenesis procedures, indicating that the SUPor-P transposon may be useful for studying the structural and functional properties of heterochromatin.


Genetics ◽  
1992 ◽  
Vol 132 (3) ◽  
pp. 737-753 ◽  
Author(s):  
G H Karpen ◽  
A C Spradling

Abstract We investigated whether single P element insertional mutagenesis could be used to analyze heterochromatin within the Drosophila minichromosome Dp1187. Forty-five insertions of the P[lacZ,rosy+] element onto Dp1187 (recovered among 7,825 transpositions) were highly clustered. None was recovered in centromeric heterochromatin, but 39 occurred about 40 kb from the distal telomere within a 4.7-kb hotspot containing tandem copies of a novel 1.8-kb repetitive DNA sequence. The DNA within and distal to this region lacked essential genes and displayed several other properties characteristic of heterochromatin. The rosy+ genes within the inserted transposons were inhibited by position-effect variegation, and the subtelomeric region was underrepresented in polytene salivary gland cells. These experiments demonstrated that P elements preferentially transpose into a small subset of heterochromatic sites, providing a versatile method for studying the structure and function of these chromosome regions. This approach revealed that a Drosophila chromosome contains a large region of subtelomeric heterochromatin with specific structural and genetic properties.


Genome ◽  
1993 ◽  
Vol 36 (2) ◽  
pp. 356-366 ◽  
Author(s):  
Theodore S. Higson ◽  
June E. Tessiatore ◽  
Sean A. Bennett ◽  
Raymond C. Derk ◽  
Michael A. Kotarski

The Star/asteroid (S/ast) region of Drosophila melanogaster has been cloned by P element transposon tagging using the snw chromosome as a source of defective P elements. In each mutation examined, the element integrated into the region was a 0.5-kb element from a region proximal to sn and not one of the head-to-head elements from the sn locus. Previously described spontaneous and X-ray induced mutations of S and ast were located on the molecular map by Southern analysis and restriction endonuclease mapping of genomic clones. S mutations are either large deletions of the cloned region or DNA breaks located near the P element insertions that cause ast mutations. Both S and ast mutations reduce the steady-state amounts of a 3.4-kb RNA. The molecular data, together with the phenotypic interactions observed for S and ast alleles, are consistent with the interpretation that S and ast mutations are lesions within the same gene or within genes that are functionally related.Key words: Drosophila, Star, asteroid, P elements.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1697-1722 ◽  
Author(s):  
Peter Deák ◽  
Mahmoud M Omar ◽  
Robert D C Saunders ◽  
Margit Pál ◽  
Orbán Komonyi ◽  
...  

Abstract We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven “super-contigs” that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


Sign in / Sign up

Export Citation Format

Share Document