Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para.

Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 203-214 ◽  
Author(s):  
J R Thackeray ◽  
B Ganetzky

Abstract We cloned genomic DNA corresponding to the Drosophila virilis homologue of para, a gene encoding a sodium channel alpha-subunit, and obtained many partial cDNA clones from embryos and adults. Para protein has been well conserved, and the optional elements at six different sites of alternative splicing in D. melanogaster are present in D. virilis, in addition to one new optional exon. Among 31 different splice-types observed in D. virilis, the stage-specific pattern of alternative splicing seen in D. melanogaster is also conserved. Comparison of genomic DNA sequence revealed three aspects that vary between alternatively and constitutively used exon sequences. Sixteen short blocks (10-75 bp), the only recognizably conserved intron sequence, were disproportionately associated with alternatively used splice sites. Silent site substitutions were found much less frequently in alternative than constitutive exon elements, and the degree of match to the Drosophila splice site consensus tended to be lower at less frequently selected alternative splice junctions. This study shows that the developmentally regulated variability of para products is highly conserved and therefore likely to be of functional significance and suggests that a variety of different sequence-dependent mechanisms may regulate this pattern of alternative splicing.

2020 ◽  
Vol 152 (3) ◽  
Author(s):  
Christopher H. Thompson ◽  
Roy Ben-Shalom ◽  
Kevin J. Bender ◽  
Alfred L. George

Epileptic encephalopathies are severe forms of infantile-onset epilepsy often complicated by severe neurodevelopmental impairments. Some forms of early-onset epileptic encephalopathy (EOEE) have been associated with variants in SCN2A, which encodes the brain voltage-gated sodium channel NaV1.2. Many voltage-gated sodium channel genes, including SCN2A, undergo developmentally regulated mRNA splicing. The early onset of these disorders suggests that developmentally regulated alternative splicing of NaV1.2 may be an important consideration when elucidating the pathophysiological consequences of epilepsy-associated variants. We hypothesized that EOEE-associated NaV1.2 variants would exhibit greater dysfunction in a splice isoform that is prominently expressed during early development. We engineered five EOEE-associated NaV1.2 variants (T236S, E999K, S1336Y, T1623N, and R1882Q) into the adult and neonatal splice isoforms of NaV1.2 and performed whole-cell voltage clamp to elucidate their functional properties. All variants exhibited functional defects that could enhance neuronal excitability. Three of the five variants (T236S, E999K, and S1336Y) exhibited greater dysfunction in the neonatal isoform compared with those observed in the adult isoform. Computational modeling of a developing cortical pyramidal neuron indicated that T236S, E999K, S1336Y, and R1882Q showed hyperexcitability preferentially in immature neurons. These results suggest that both splice isoform and neuronal developmental stage influence how EOEE-associated NaV1.2 variants affect neuronal excitability.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 965-977
Author(s):  
H M Bomze ◽  
A J López

Abstract In Drosophila melanogaster, alternatively spliced mRNAs from the homeotic gene Ultrabithorax (Ubx) encode a family of structurally distinct homeoprotein isoforms. The developmentally regulated expression patterns of these isoforms suggest that they have specialized stage- and tissue-specific functions. To evaluate the functional importance of UBX isoform diversity and gain clues to the mechanism that regulates processing of Ubx RNAs, we have investigated whether the Ubx RNAs of other insects undergo similar alternative splicing. We have isolated and characterized Ubx cDNA fragments from D. melanogaster, Drosophila pseudoobscura, Drosophila hydei and Drosophila virilis, species separated by as much as 60 million years of evolution, and have found that three aspects of Ubx RNA processing have been conserved. (1) These four species exhibit identical patterns of optional exon use in a region adjacent to the homeodomain. (2) These four species produce the same family of UBX protein isoforms with identical amino acid sequences in the optional exons, even though the common amino-proximal region has undergone substantial divergence. The nucleotide sequences of the optional exons, including third positions of rare codons, have also been conserved strongly, suggesting functional constraints that are not limited to coding potential. (3) The tissue- and stage-specific patterns of expression of different UBX isoforms are identical among these Drosophila species, indicating that the developmental regulation of the alternative splicing events has also been conserved. These findings argue for an important role of alternative splicing in Ubx function. We discuss the implications of these results for models of UBX protein function and the mechanism of alternative splicing.


1988 ◽  
Vol 8 (9) ◽  
pp. 3591-3602 ◽  
Author(s):  
P D Hanke ◽  
R V Storti

The structure of the Drosophila melanogaster tropomyosin II (TmII) gene has been determined by DNA sequencing of cDNA clones and the genomic DNA coding for the gene. Two overlapping transcriptional units produce at least four different tropomyosin isoforms. A combination of developmentally regulated promoters and alternative splicing produces both muscle and cytoskeletal tropomyosin isoforms. One promoter is a muscle-specific promoter and produces three different tropomyosin isoforms by alternative splicing of the last three 3' exons. The second promoter has the characteristics of a housekeeping promoter and produces a cytoskeletal tropomyosin isoform. Several internal exons along with a final 3' exon are alternatively spliced in the cytoskeletal transcript. The intron-exon boundaries of the TmII gene are identical to the intron-exon boundaries of all vertebrate tropomyosin genes reported, but are very different from the intron-exon boundaries of the D. melanogaster tropomyosin I gene. The TmII gene is the only reported tropomyosin gene that has two promoters and a quadruple alternative splice choice for the final exon. Models for the mechanism of D. melanogaster tropomyosin gene evolution are discussed.


1988 ◽  
Vol 8 (9) ◽  
pp. 3591-3602
Author(s):  
P D Hanke ◽  
R V Storti

The structure of the Drosophila melanogaster tropomyosin II (TmII) gene has been determined by DNA sequencing of cDNA clones and the genomic DNA coding for the gene. Two overlapping transcriptional units produce at least four different tropomyosin isoforms. A combination of developmentally regulated promoters and alternative splicing produces both muscle and cytoskeletal tropomyosin isoforms. One promoter is a muscle-specific promoter and produces three different tropomyosin isoforms by alternative splicing of the last three 3' exons. The second promoter has the characteristics of a housekeeping promoter and produces a cytoskeletal tropomyosin isoform. Several internal exons along with a final 3' exon are alternatively spliced in the cytoskeletal transcript. The intron-exon boundaries of the TmII gene are identical to the intron-exon boundaries of all vertebrate tropomyosin genes reported, but are very different from the intron-exon boundaries of the D. melanogaster tropomyosin I gene. The TmII gene is the only reported tropomyosin gene that has two promoters and a quadruple alternative splice choice for the final exon. Models for the mechanism of D. melanogaster tropomyosin gene evolution are discussed.


1991 ◽  
Vol 56 (3) ◽  
pp. 797-804 ◽  
Author(s):  
John R. Harper ◽  
John T. Prince ◽  
Patricia A. Healy ◽  
Jill K. Stuart ◽  
Susan J. Nauman ◽  
...  

2004 ◽  
Vol 279 (44) ◽  
pp. 46234-46241 ◽  
Author(s):  
Christopher K. Raymond ◽  
John Castle ◽  
Philip Garrett-Engele ◽  
Christopher D. Armour ◽  
Zhengyan Kan ◽  
...  

Molecular medicine requires the precise definition of drug targets, and tools are now in place to provide genome-wide information on the expression and alternative splicing patterns of any known gene. DNA microarrays were used to monitor transcript levels of the nine well-characterized α-subunit sodium channel genes across a broad range of tissues from cynomolgus monkey, a non-human primate model. Alternative splicing of human transcripts for a subset of the genes that are expressed in dorsal root ganglia, SCN8A (Nav1.6), SCN9A (Nav1.7), and SCN11A (Nav1.9) was characterized in detail. Genomic sequence analysis among gene family paralogs and between cross-species orthologs suggested specific alternative splicing events within transcripts of these genes, all of which were experimentally confirmed in human tissues. Quantitative PCR revealed that certain alternative splice events are uniquely expressed in dorsal root ganglia. In addition to characterization of human transcripts, alternatively spliced sodium channel transcripts were monitored in a rat model for neuropathic pain. Consistent down-regulation of all transcripts was observed, as well as significant changes in the splicing patterns of SCN8A and SCN9A.


2005 ◽  
Vol 67 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Waren N. BATICADOS ◽  
William H. WITOLA ◽  
Noboru INOUE ◽  
Jung-Yeon, KIM ◽  
Noritaka KUBOKI ◽  
...  

Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 743-750 ◽  
Author(s):  
L D Fletcher ◽  
J M McDowell ◽  
R R Tidwell ◽  
R B Meagher ◽  
C C Dykstra

Abstract Actin is a major component of the cytoskeleton and one of the most abundant proteins found in eukaryotic cells. Comparative sequence analysis shows that this essential gene has been highly conserved throughout eukaryotic evolution making it useful for phylogenetic analysis. Complete cDNA clones for the actin-encoding gene were isolated and characterized from Pneumocystis carinii purified from immunosuppressed rat lungs. The nucleotide sequence encodes a protein of 376 amino acids. The predicted actin protein of P. carinii shares a high degree of conservation to other known actins. Only one major actin gene was found in P. carinii. The P. carinii actin sequence was compared with 30 other actin sequences. Gene phylogenies constructed using both neighbor-joining and protein parsimony methods places the P. carinii actin sequence closest to the majority of the fungi. Since the phylogenetic relationship of P. carinii to fungi and protists has been questioned, these data on the actin gene phylogeny support the grouping of P. carinii with the fungi.


2000 ◽  
Vol 113 (24) ◽  
pp. 4605-4617
Author(s):  
A. Hallmann ◽  
D.L. Kirk

Volvox is one of the simplest multicellular organisms with only two cell types, yet it has a surprisingly complex extracellular matrix (ECM) containing many region-specific morphological components, making Volvox suitable as a model system for ECM investigations. ECM deposition begins shortly after inversion, which is the process by which the embryo turns itself right-side-out at the end of embryogenesis. It was previously shown that the gene encoding an ECM glycoprotein called ISG is transcribed very transiently during inversion. Here we show that the developmentally controlled ISG accumulates at the bases of the flagella right after inversion, before any morphologically recognizable ECM structures have yet developed. Later, ISG is abundant in the ‘flagellar hillocks’ that encircle the basal ends of all flagella, and in the adjacent ‘boundary zone’ that delimits the spheroid. Transgenic Volvox were generated which express a truncated form of ISG. These transgenics exhibit a severely disorganized ECM within which the cells are embedded in a highly chaotic manner that precludes motility. A synthetic version of the C-terminal decapeptide of ISG has a similar disorganizing effect, but only when it is applied during or shortly after inversion. We postulate that ISG plays a critical role in morphogenesis and acts as a key organizer of ECM architecture; at the very beginning of ECM formation ISG establishes an essential initial framework that both holds the somatic cells in an adaptive orientation and acts as the scaffold upon which the rest of the ECM can be properly assembled, assuring that somatic cells of post-inversion spheroids are held in orientations and locations that makes adaptive swimming behavior possible.


Sign in / Sign up

Export Citation Format

Share Document