Single-Strand DNA-Specific Exonucleases in Escherichia coli: Roles in Repair and Mutation Avoidance

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 7-16
Author(s):  
Mohan Viswanathan ◽  
Susan T Lovett

Abstract Mutations in the genes encoding single-strand DNA-specific exonucleases (ssExos) of Escherichia coli were examined for effects on mutation avoidance, UV repair, and conjugational recombination. Our results indicate complex and partially redundant roles for ssExos in these processes. Although biochemical experiments have implicated RecJ exonuclease, Exonuclease I (ExoI), and Exonuclease VII (ExoVII) in the methyl-directed mismatch repair pathway, the RecJ− ExoI− ExoVII− mutant did not exhibit a mutator phenotype in several assays for base substitution mutations. If these exonucleases do participate in mismatch excision, other exonucleases in E. coli can compensate for their loss. Frameshift mutations, however, were stimulated in the RecJ− ExoI− ExoVII− mutant. For acridine-induced frameshifts, this mutator effect was due to a synergistic effect of ExoI− and ExoVII− mutations, implicating both ExoI and ExoVII in avoidance of frameshift mutations. Although no single exonuclease mutant was especially sensitive to UV irradiation, the RecJ− ExoVII− double mutant was extremely sensitive. The addition of an ExoI− mutation augmented this sensitivity, suggesting that all three exonucleases play partially redundant roles in DNA repair. The ability to inherit genetic markers by conjugation was reduced modestly in the ExoI− RecJ− mutant, implying that the function of either ExoI or RecJ exonucleases enhances RecBCD-dependent homologous recombination.

2002 ◽  
Vol 184 (24) ◽  
pp. 6866-6872 ◽  
Author(s):  
Joanna Klapacz ◽  
Ashok S. Bhagwat

ABSTRACT We showed previously that transcription in Escherichia coli promotes C · G-to-T · A transitions due to increased deamination of cytosines to uracils in the nontranscribed but not the transcribed strand (A. Beletskii and A. S. Bhagwat, Proc. Natl. Acad. Sci. USA 93:13919-13924, 1996). To study mutations other than that of C to T, we developed a new genetic assay that selects only base substitution mutations and additionally excludes C · G to T · A transitions. This novel genetic reversion system is based on mutations in a termination codon and involves positive selection for resistance to bleomycin or kanamycin. Using this genetic system, we show here that transcription from a strong promoter increases the level of non-C-to-T as well as C-to-T mutations. We find that high-level transcription increases the level of non-C-to-T mutations in DNA repair-proficient cells in three different sequence contexts in two genes and that the rate of mutation is higher by a factor of 2 to 4 under these conditions. These increases are not caused by a growth advantage for the revertants and are restricted to genes that are induced for transcription. In particular, high levels of transcription do not create a general mutator phenotype in E. coli. Sequence analysis of the revertants revealed that the frequency of several different base substitutions increased upon transcription of the bleomycin resistance gene and that G · C-to-T · A transversions dominated the spectrum in cells transcribing the gene. These results suggest that high levels of transcription promote many different spontaneous base substitutions in E. coli.


2000 ◽  
Vol 182 (23) ◽  
pp. 6742-6750 ◽  
Author(s):  
B. S. Strauss ◽  
R. Roberts ◽  
L. Francis ◽  
P. Pouryazdanparast

ABSTRACT We isolated several new mutator mutations of the Escherichia coli replicative polymerase dnaE subunit alpha and used them and a previously reported dnaE mutation to study spontaneous frameshift and base substitution mutations. Two of thesednaE strains produce many more mutants when grown on rich (Luria-Bertani) than on minimal medium. A differential effect of the medium was not observed when these dnaE mutations were combined with a mismatch repair mutation. The selection scheme for thednaE mutations required that they be able to complement a temperature-sensitive strain. However, the ability to complement is not related to the mutator effect for at least one of the mutants. Comparison of the mutation rates for frameshift and base substitution mutations in mutS and dnaE mutS strains suggests that the mismatch repair proteins respond differently to the two types of change. Deletion of dinB from both chromosome and plasmid resulted in a four- to fivefold decrease in the rate of frameshift and base substitution mutations in a dnaE mutSdouble mutant background. This reduction indicates that most mistakes in replication occur as a result of the action of the auxiliary rather than the replicative polymerase in this dnaE mutant. Deletion of dinB from strains carrying a wild-typednaE had a measurable effect, suggesting that a fraction of spontaneous mutations occur as a result of dinB polymerase action even in cells with a normal replicative polymerase.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 929-934
Author(s):  
Mohan Viswanathan ◽  
Anne Lanjuin ◽  
Susan T Lovett

Abstract There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3′ DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3′ DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Jeffrey H Miller ◽  
Pauline Funchain ◽  
Wendy Clendenin ◽  
Tiffany Huang ◽  
Anh Nguyen ◽  
...  

Abstract Nucleoside diphosphate (NDP) kinase is one of the enzymes that maintains triphosphate pools. Escherichia coli strains (ndk) lacking this enzyme have been shown to be modest base substitution mutators, and two members of the human family of NDP kinases act as tumor suppressors. We show here that in E. coli strains lacking NDP kinase high levels of mispairs are generated, but most of these are corrected by the mismatch-repair system. Double mutants that are ndk mutS, lacking both the NDP kinase and mismatch repair, have levels of base substitutions 15-fold higher and levels of certain frameshifts up to 10-fold higher than those of the respective mutations in mutS strains that are NDP kinase proficient. A sequence analysis of the specificity of base substitution mutations generated in ndk and ndk mutS backgrounds as well as other experiments suggests that NDP kinase deficiency stimulates polymerase errors that lead to A:T → G:C transitions and that the editing capacity of cells may be affected, leading to additional uncorrected mispairs and to A:T → T:A transversions.


2020 ◽  
Vol 295 (46) ◽  
pp. 15454-15463 ◽  
Author(s):  
Chelsey R. Fontenot ◽  
Homyra Tasnim ◽  
Kathryn A. Valdes ◽  
Codrina V. Popescu ◽  
Huangen Ding

The ferric uptake regulator (Fur) is a global transcription factor that regulates intracellular iron homeostasis in bacteria. The current hypothesis states that when the intracellular “free” iron concentration is elevated, Fur binds ferrous iron, and the iron-bound Fur represses the genes encoding for iron uptake systems and stimulates the genes encoding for iron storage proteins. However, the “iron-bound” Fur has never been isolated from any bacteria. Here we report that the Escherichia coli Fur has a bright red color when expressed in E. coli mutant cells containing an elevated intracellular free iron content because of deletion of the iron–sulfur cluster assembly proteins IscA and SufA. The acid-labile iron and sulfide content analyses in conjunction with the EPR and Mössbauer spectroscopy measurements and the site-directed mutagenesis studies show that the red Fur protein binds a [2Fe-2S] cluster via conserved cysteine residues. The occupancy of the [2Fe-2S] cluster in Fur protein is ∼31% in the E. coli iscA/sufA mutant cells and is decreased to ∼4% in WT E. coli cells. Depletion of the intracellular free iron content using the membrane-permeable iron chelator 2,2´-dipyridyl effectively removes the [2Fe-2S] cluster from Fur in E. coli cells, suggesting that Fur senses the intracellular free iron content via reversible binding of a [2Fe-2S] cluster. The binding of the [2Fe-2S] cluster in Fur appears to be highly conserved, because the Fur homolog from Hemophilus influenzae expressed in E. coli cells also reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis.


2006 ◽  
Vol 188 (17) ◽  
pp. 6326-6334 ◽  
Author(s):  
Sergei Korshunov ◽  
James A. Imlay

ABSTRACT Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.


1999 ◽  
Vol 181 (13) ◽  
pp. 3981-3993 ◽  
Author(s):  
Sylvia A. Denome ◽  
Pamela K. Elf ◽  
Thomas A. Henderson ◽  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology ofEscherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two ressites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via λ phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bpres site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, thedacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the β-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.


2007 ◽  
Vol 190 (5) ◽  
pp. 1710-1717 ◽  
Author(s):  
Amit Mukherjee ◽  
Mark K. Mammel ◽  
J. Eugene LeClerc ◽  
Thomas A. Cebula

ABSTRACT In silico analyses of previously sequenced strains of Escherichia coli O157:H7, EDL933 and Sakai, localized the gene cluster for the utilization of N-acetyl-d-galactosamine (Aga) and d-galactosamine (Gam). This gene cluster encodes the Aga phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and other catabolic enzymes responsible for transport and catabolism of Aga. As the complete coding sequences for enzyme IIA (EIIA)Aga/Gam, EIIBAga, EIICAga, and EIIDAga of the Aga PTS are present, E. coli O157:H7 strains normally are able to utilize Aga as a sole carbon source. The Gam PTS complex, in contrast, lacks EIICGam, and consequently, E. coli O157:H7 strains cannot utilize Gam. Phenotypic analyses of 120 independent isolates of E. coli O157:H7 from our culture collection revealed that the overwhelming majority (118/120) displayed the expected Aga+ Gam− phenotype. Yet, when 194 individual isolates, derived from a 2006 spinach-associated E. coli O157:H7 outbreak, were analyzed, all (194/194) displayed an Aga− Gam− phenotype. Comparison of aga/gam sequences from two spinach isolates with those of EDL933 and Sakai revealed a single nucleotide change (G:C→A:T) in the agaF gene in the spinach-associated isolates. The base substitution in agaF, which encodes EIIAAga/Gam of the PTS, changes a conserved glycine residue to serine (Gly91Ser). Pyrosequencing of this region showed that all spinach-associated E. coli O157:H7 isolates harbored this same G:C→A:T substitution. Notably, when agaF + was cloned into an expression vector and transformed into six spinach isolates, all (6/6) were able to grow on Aga, thus demonstrating that the Gly91Ser substitution underlies the Aga− phenotype in these isolates.


2015 ◽  
Vol 197 (14) ◽  
pp. 2316-2324 ◽  
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Yoshinori Akiyama

ABSTRACTσE, an alternative σ factor that governs a major signaling pathway in envelope stress responses in Gram-negative bacteria, is essential for growth ofEscherichia colinot only under stressful conditions, such as elevated temperature, but also under normal laboratory conditions. A mutational inactivation of thehicBgene has been reported to suppress the lethality caused by the loss of σE.hicBencodes the antitoxin of the HicA-HicB toxin-antitoxin (TA) system; overexpression of the HicA toxin, which exhibits mRNA interferase activity, causes cleavage of mRNAs and an arrest of cell growth, while simultaneous expression of HicB neutralizes the toxic effects of overproduced HicA. To date, however, how the loss of HicB rescues the cell lethality in the absence of σEand, more specifically, whether HicA is involved in this process remain unknown. Here we showed that simultaneous disruption ofhicAabolished suppression of the σEessentiality in the absence ofhicB, while ectopic expression of wild-type HicA, but not that of its mutant forms without mRNA interferase activity, restored the suppression. Furthermore, HicA and two other mRNA interferase toxins, HigB and YafQ, suppressed the σEessentiality even in the presence of chromosomally encoded cognate antitoxins when these toxins were overexpressed individually. Interestingly, when the growth media were supplemented with low levels of antibiotics that are known to activate toxins,E. colicells with no suppressor mutations grew independently of σE. Taken together, our results indicate that the activation of TA system toxins can suppress the σEessentiality and affect the extracytoplasmic stress responses.IMPORTANCEσEis an alternative σ factor involved in extracytoplasmic stress responses. Unlike other alternative σ factors, σEis indispensable for the survival ofE. colieven under unstressed conditions, although the exact reason for its essentiality remains unknown. Toxin-antitoxin (TA) systems are widely distributed in prokaryotes and are composed of two adjacent genes, encoding a toxin that exerts harmful effects on the toxin-producing bacterium itself and an antitoxin that neutralizes the cognate toxin. Curiously, it is known that inactivation of an antitoxin rescues the σEessentiality, suggesting a connection between TA systems and σEfunction. We demonstrate here that toxin activation is necessary for this rescue and suggest the possible involvement of TA systems in extracytoplasmic stress responses.


Sign in / Sign up

Export Citation Format

Share Document