scholarly journals The Archaeal Molecular Chaperone Machine: Peculiarities and Paradoxes

Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1277-1283
Author(s):  
Alberto J L Macario ◽  
Everly Conway de Macario

Abstract A major finding within the field of archaea and molecular chaperones has been the demonstration that, while some species have the stress (heat-shock) gene hsp70(dnaK), others do not. This gene encodes Hsp70(DnaK), an essential molecular chaperone in bacteria and eukaryotes. Due to the physiological importance and the high degree of conservation of this protein, its absence in archaeal organisms has raised intriguing questions pertaining to the evolution of the chaperone machine as a whole and that of its components in particular, namely, Hsp70(DnaK), Hsp40(DnaJ), and GrpE. Another archaeal paradox is that the proteins coded by these genes are very similar to bacterial homologs, as if the genes had been received via lateral transfer from bacteria, whereas the upstream flanking regions have no bacterial markers, but instead have typical archaeal promoters, which are like those of eukaryotes. Furthermore, the chaperonin system in all archaea studied to the present, including those that possess a bacterial-like chaperone machine, is similar to that of the eukaryotic-cell cytosol. Thus, two chaperoning systems that are designed to interact with a compatible partner, e.g., the bacterial chaperone machine physiologically interacts with the bacterial but not with the eucaryal chaperonins, coexist in archaeal cells in spite of their apparent functional incompatibility. It is difficult to understand how these hybrid characteristics of the archaeal chaperoning system became established and work, if one bears in mind the classical ideas learned from studying bacteria and eukaryotes. No doubt, archaea are intriguing organisms that offer an opportunity to find novel molecules and mechanisms that will, most likely, enhance our understanding of the stress response and the protein folding and refolding processes in the three phylogenetic domains.

1984 ◽  
Vol 4 (8) ◽  
pp. 1454-1459
Author(s):  
M S Ellwood ◽  
E A Craig

Saccharomyces cerevisiae contains a family of genes related to Hsp70, the major heat shock gene of Drosophila melanogaster. The transcription of three of these genes, which show no conservation of sequences 5' to the protein-coding region, was analyzed. The 5' flanking regions from the three genes were fused to the Escherichia coli beta-galactosidase structural gene and introduced into yeasts on multicopy plasmids, putting the beta-galactosidase production under yeast promoter control. Analysis of beta-galactosidase mRNA and protein production in these transformed strains revealed that transcription from the three promoters is differentially regulated. The number of transcripts from one promoter is vastly increased for a brief period after heat shock, whereas mRNA from another declines. Transcripts from a third gene are slightly enhanced upon heat shock; however, multiple 5' ends of the mRNA are found, and a minor species increases in amount after heat shock. Transcription of these promoters in their native state on the chromosome appears to be modulated in the same manner.


1984 ◽  
Vol 4 (8) ◽  
pp. 1454-1459 ◽  
Author(s):  
M S Ellwood ◽  
E A Craig

Saccharomyces cerevisiae contains a family of genes related to Hsp70, the major heat shock gene of Drosophila melanogaster. The transcription of three of these genes, which show no conservation of sequences 5' to the protein-coding region, was analyzed. The 5' flanking regions from the three genes were fused to the Escherichia coli beta-galactosidase structural gene and introduced into yeasts on multicopy plasmids, putting the beta-galactosidase production under yeast promoter control. Analysis of beta-galactosidase mRNA and protein production in these transformed strains revealed that transcription from the three promoters is differentially regulated. The number of transcripts from one promoter is vastly increased for a brief period after heat shock, whereas mRNA from another declines. Transcripts from a third gene are slightly enhanced upon heat shock; however, multiple 5' ends of the mRNA are found, and a minor species increases in amount after heat shock. Transcription of these promoters in their native state on the chromosome appears to be modulated in the same manner.


1998 ◽  
Vol 4 (4) ◽  
pp. 236-239
Author(s):  
B. Joy Snider

Heat shock proteins were initially described as the predominant proteins expressed immediately after a thermal stress. These ubiquitously expressed proteins function as molecular chaperones; they aid in the folding, subcellular translocation, and assembly of other proteins. Although most of these proteins are expressed constitutively, enhanced expression, induced by stress or genetic manipulations, can reduce subsequent cellular injury in many cell types, including neurons and glia. Further understanding of how the expression of these proteins is controlled in the nervous system, and how they can be manipulated to attenuate injury, could provide therapeutic targets for cerebral ischemia and neurodegenerative disorders.


1988 ◽  
Vol 263 (24) ◽  
pp. 11718-11728 ◽  
Author(s):  
D T Chin ◽  
S A Goff ◽  
T Webster ◽  
T Smith ◽  
A L Goldberg

Sign in / Sign up

Export Citation Format

Share Document