scholarly journals Quantitative Trait Loci for Floral Morphology in Arabidopsis thaliana

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1379-1392 ◽  
Author(s):  
Thomas Juenger ◽  
Michael Purugganan ◽  
Trudy F C Mackay

Abstract A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these same traits in the Landsberg erecta × Columbia recombinant inbred line population. There was significant genetic variation for all traits in both the sample of naturally occurring ecotypes and in the Ler × Col recombinant inbred line population. In addition, broad-sense genetic correlations among the traits were positive and high. A composite interval mapping (CIM) analysis detected 18 significant QTL affecting at least one floral character. Eleven QTL were associated with several floral traits, supporting either pleiotropy or tight linkage as major determinants of flower morphological integration. We propose several candidate genes that may underlie these QTL on the basis of positional information and functional arguments. Genome-wide QTL mapping is a promising tool for the discovery of candidate genes controlling morphological development, the detection of novel phenotypic effects for known genes, and in generating a more complete understanding of the genetic basis of floral development.

Nematology ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 525-537
Author(s):  
Chunjie Li ◽  
Jialin Wang ◽  
Jia You ◽  
Xinpeng Wang ◽  
Baohui Liu ◽  
...  

Summary A recombinant inbred line population of soybean (Glycine max) was utilised to identify the quantitative trait loci (QTLs) determining the response to infection by two root-knot nematode species, Meloidogyne incognita and M. hapla, in glasshouse assays. QTL analysis detected seven major and four minor QTLs on seven soybean chromosomes ((Chrs) 1, 7, 8, 10, 14, 18, 20) explaining 6-41% phenotypic variance (PVE) for M. incognita root response and nematode reproduction. Three of the major QTLs, on Chrs 7, 10 and 18, were confirmed in previous reports and two major QTLs on Chrs 14 and 20 were detected for the first time. The QTL analysis with M. hapla provides the first report of a major QTL region mapped on Chr 7, explaining 70-82% PVE in M. hapla root response and nematode reproduction. These novel identified QTLs with flanking markers will be helpful in marker-assisted breeding for nematode resistance in soybean.


Sign in / Sign up

Export Citation Format

Share Document