scholarly journals Mutualistic Wolbachia Infection in Aedes albopictus: Accelerating Cytoplasmic Drive

Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1087-1094
Author(s):  
Stephen L Dobson ◽  
Eric J Marsland ◽  
Wanchai Rattanadechakul

Abstract Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies).

2010 ◽  
Vol 76 (17) ◽  
pp. 5887-5891 ◽  
Author(s):  
Yuqing Fu ◽  
Laurent Gavotte ◽  
David R. Mercer ◽  
Stephen L. Dobson

ABSTRACT Obligately intracellular Wolbachia bacteria infect numerous invertebrates and often manipulate host reproduction to facilitate the spread of infection. An example of reproductive manipulation is Wolbachia-induced cytoplasmic incompatibility (CI), which occurs commonly in insects. This CI has been the focus both of basic scientific studies of naturally occurring invasion events and of applied investigations on the use of Wolbachia as a vehicle to drive desired genotypes into insect populations (“gene drive” or “population replacement” strategies). The latter application requires an ability to generate artificial infections that cause a pattern of unidirectional incompatibility with the targeted host population. A suggested target of population replacement strategies is the mosquito Aedes albopictus (Asian tiger mosquito), an important invasive pest and disease vector. Aedes albopictus individuals are naturally “superinfected” with two Wolbachia types: wAlbA and wAlbB. Thus, generating a strain that is unidirectionally incompatible with field populations requires the introduction of an additional infection into the preexisting superinfection. Although prior reports demonstrate an ability to transfer Wolbachia infections to A. albopictus artificially, including both intra- and interspecific Wolbachia transfers, previous efforts have not generated a strain capable of invading natural populations. Here we describe the generation of a stable triple infection by introducing Wolbachia wRi from Drosophila simulans into a naturally superinfected A. albopictus strain. The triple-infected strain displays a pattern of unidirectional incompatibility with the naturally infected strain. This unidirectional CI, combined with a high fidelity of maternal inheritance and low fecundity effects, suggests that the artificial cytotype could serve as an appropriate vehicle for gene drive.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2029-2038 ◽  
Author(s):  
Jason L Rasgon ◽  
Thomas W Scott

AbstractBefore maternally inherited bacterial symbionts like Wolbachia, which cause cytoplasmic incompatibility (CI; reduced hatch rate) when infected males mate with uninfected females, can be used in a program to control vector-borne diseases it is essential to understand their dynamics of infection in natural arthropod vector populations. Our study had four goals: (1) quantify the number of Wolbachia strains circulating in the California Culex pipiens species complex, (2) investigate Wolbachia infection frequencies and distribution in natural California populations, (3) estimate the parameters that govern Wolbachia spread among Cx. pipiens under laboratory and field conditions, and (4) use these values to estimate equilibrium levels and compare predicted infection prevalence levels to those observed in nature. Strain-specific PCR, wsp gene sequencing, and crossing experiments indicated that a single Wolbachia strain infects Californian Cx. pipiens. Infection frequency was near or at fixation in all populations sampled for 2 years along a >1000-km north-south transect. The combined statewide infection frequency was 99.4%. Incompatible crosses were 100% sterile under laboratory and field conditions. Sterility decreased negligibly with male age in the laboratory. Infection had no significant effect on female fecundity under laboratory or field conditions. Vertical transmission was >99% in the laboratory and ∼98.6% in the field. Using field data, models predicted that Wolbachia will spread to fixation if infection exceeds an unstable equilibrium point above 1.4%. Our estimates accurately predicted infection frequencies in natural populations. If certain technical hurdles can be overcome, our data indicate that Wolbachia can invade vector populations as part of an applied transgenic strategy for vector-borne disease reduction.


2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Angelique K. Asselin ◽  
Simon Villegas-Ospina ◽  
Ary A. Hoffmann ◽  
Jeremy C. Brownlie ◽  
Karyn N. Johnson

ABSTRACTWolbachiainfections can present different phenotypes in hosts, including different forms of reproductive manipulation and antiviral protection, which may influence infection dynamics within host populations. In populations ofDrosophila pandoratwo distinctWolbachiastrains coexist, each manipulating host reproduction: strainwPanCI causes cytoplasmic incompatibility (CI), whereas strainwPanMK causes male killing (MK). CI occurs when aWolbachia-infected male mates with a female not infected with a compatible type ofWolbachia, leading to nonviable offspring.wPanMK can rescuewPanCI-induced CI but is unable to induce CI. The antiviral protection phenotypes provided by thewPanCI andwPanMK infections were characterized; the strains showed differential protection phenotypes, whereby cricket paralysis virus (CrPV)-induced mortality was delayed in flies infected withwPanMK but enhanced in flies infected withwPanCI compared to their respectiveWolbachia-cured counterparts. Homologs of thecifAandcifBgenes involved in CI identified inwPanMK andwPanCI showed a high degree of conservation; however, the CifB protein inwPanMK is truncated and is likely nonfunctional. The presence of a likely functional CifA inwPanMK andwPanMK’s ability to rescuewPanCI-induced CI are consistent with the recent confirmation of CifA’s involvement in CI rescue, and the absence of a functional CifB protein further supports its involvement as a CI modification factor. Taken together, these findings indicate thatwPanCI andwPanMK have different relationships with their hosts in terms of their protective and CI phenotypes. It is therefore likely that different factors influence the prevalence and dynamics of these coinfections in naturalDrosophila pandorahosts.IMPORTANCEWolbachiastrains are common endosymbionts in insects, with multiple strains often coexisting in the same species. The coexistence of multiple strains is poorly understood but may rely onWolbachiaorganisms having diverse phenotypic effects on their hosts. AsWolbachiais increasingly being developed as a tool to control disease transmission and suppress pest populations, it is important to understand the ways in which multipleWolbachiastrains persist in natural populations and how these might then be manipulated. We have therefore investigated viral protection and the molecular basis of cytoplasmic incompatibility in two coexistingWolbachiastrains with contrasting effects on host reproduction.


2017 ◽  
Vol 15 (2) ◽  
pp. 523-541 ◽  
Author(s):  
Bo Zheng ◽  
Wenliang Guo ◽  
Linchao Hu ◽  
Mugen Huang ◽  
Jianshe Yu

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriela A. Garcia ◽  
Ary A. Hoffmann ◽  
Rafael Maciel-de-Freitas ◽  
Daniel A. M. Villela

AbstractMosquitoes that carry Wolbachia endosymbionts may help control the spread of arboviral diseases, such as dengue, Zika and chikungunya. Wolbachia frequencies systematically increase only when the frequency-dependent advantage due to cytoplasmic incompatibility exceeds frequency-independent costs, which may be intrinsic to the Wolbachia and/or can be associated with the genetic background into which Wolbachia are introduced. Costs depend on field conditions such as the environmental pesticide load. Introduced mosquitoes need adequate protection against insecticides to ensure survival after release. We model how insecticide resistance of transinfected mosquitoes determines the success of local Wolbachia introductions and link our theoretical results to field data. Two Ae. aegypti laboratory strains carrying Wolbachia were released in an isolated district of Rio de Janeiro, Brazil: wMelBr (susceptible to pyrethroids) and wMelRio (resistant to pyrethroids). Our models elucidate why releases of the susceptible strain failed to result in Wolbachia establishment, while releases of the resistant strain led to Wolbachia transforming the native Ae. aegypti population. The results highlight the importance of matching insecticide resistance levels in release stocks to those in the target natural populations during Wolbachia deployment.


Genetics ◽  
1995 ◽  
Vol 140 (4) ◽  
pp. 1319-1338 ◽  
Author(s):  
M Turelli ◽  
A A Hoffmann

Abstract In Drosophila simulans, cytoplasmically transmitted Wolbachia microbes cause reduced egg hatch when infected males mate with uninfected females. A Wolbachia infection and an associated mtDNA variant have spread northward through California since 1986. PCR assays show that Wolbachia infection is prevalent throughout the continental US and Central and South America, but some lines from Florida and Ecuador that are PCR-positive for Wolbachia do not cause incompatibility. We estimate from natural populations infection frequencies and the transmission and incompatibility parameter values that affect the spread of the infection. On average, infected females from nature produce 3-4% uninfected ova. Infected females with relatively low fidelity of maternal transmission show partial incompatibility with very young infected laboratory males. Nevertheless, crosses between infected flies in nature produce egg-hatch rates indistinguishable from those produced by crosses between uninfected individuals. Incompatible crosses in nature produce hatch rates 30-70% as high as those from compatible crosses. Wild-caught infected and uninfected females are equally fecund in the laboratory. Incompatibility decreases with male age, and age-specific incompatibility levels suggest that males mating in nature may often be 2 or 3 weeks old. Our parameter estimates accurately predict the frequency of Wolbachia infection in California populations.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 221-231 ◽  
Author(s):  
Ary A Hoffmann ◽  
Miriam Hercus ◽  
Hayat Dagher

Abstract Field populations of Drosophila melanogaster are often infected with Wolbachia, a vertically transmitted microorganism. Under laboratory conditions the infection causes partial incompatibility in crosses between infected males and uninfected females. Here we examine factors influencing the distribution of the infection in natural populations. We show that the level of incompatibility under field conditions was much weaker than in the laboratory. The infection was not transmitted with complete fidelity under field conditions, while field males did not transmit the infection to uninfected females and Wolbachia did not influence sperm competition. There was no association between field fitness as measured by fluctuating asymmetry and the infection status of adults. Infected field females were smaller than uninfecteds in some collections from a subtropical location, but not in other collections from the same location. Laboratory cage studies showed that the infection did not change in frequency when populations were maintained at a low larval density, but it decreased in frequency at a high larval density. Monitoring of infection frequencies in natural populations indicated stable frequencies in some populations but marked fluctuations in others. Simple models suggest that the infection probably provides a fitness benefit for the host in order to persist in populations. The exact nature of this benefit remains elusive.


2018 ◽  
Author(s):  
Zeynab Bagheri ◽  
Ali Asghar Talebi ◽  
Sassan Asgari ◽  
Mohammad Mehrabadi

Wolbachia are common intracellular bacteria that are generally found in arthropods including a high proportion of insects and also some nematodes. This intracellular symbiont can affect sex ratio with a variety of reproductive anomalies in the host, including cytoplasmic incompatibility (CI) in haplodiploides. In this study, we questioned if the parasitoid wasp, Habrobracon hebetor (Hym.: Braconidae), which is one of the most important biological control agents of many lepidopteran larvae, is infected with Wolbachia. To test this, DNA was extracted from adult insects and subjected to PCR using specific primers to Wolbachia target genes. The results showed high rate of Wolbachia infection in this parasitoid wasp. To find out the biological function of Wolbachia in H. hebetor, we removed this bacterium from the wasps using antibiotic treatment (cured wasps). Results of the crossing experiments revealed that Wolbachia induced CI in H. hebetor in which cured females crossed with infected males produced only males, while in the progeny of other crosses, both males and females were observed. Also, our result showed that the presence of Wolbachia in the females increased fecundity and female offspring of this parasitoid wasp. However, the presence of Wolbachia in the males had no significant effect on the fecundity and female production, but might have incurred costs. We also investigated the effect of Wolbachia on mate choice and found that Wolbachia affects mating behavior of H. hebetor. Together, we show that Wolbachia induce CI in H. hebetor and affect host mating behavior in favor of its transmission. Wolbachia utilize these strategies to increase the frequency of infected females in the host population.


Sign in / Sign up

Export Citation Format

Share Document