scholarly journals TEMPERATURE-SENSITIVE MUTANTS FOR THE REPLICATION OF PLASMIDS IN ESCHERICHIA COLI II. PROPERTIES OF HOST AND PLASMID MUTATIONS

Genetics ◽  
1973 ◽  
Vol 74 (1) ◽  
pp. 1-16
Author(s):  
David T Kingsbury ◽  
Donna G Sieckmann ◽  
Donald R Helinski

ABSTRACT Host mutations in Escherichia coli K12 selected for the temperature-sensitive replication of the bacterial plasmid colicinogenic factor E1 (ColE1) exhibit a pleiotropic effect with respect to the effect of the mutation on other extrachromosomal elements. The mutations also vary with respect to the time of incubation of the cells at 43°C required for complete cessation of COlE1, DNA synthesis. While the synthesis of the bacterial chromosome appears unaffected, supercoiled ColE1 DNA replication stops immediately in some mutants and gradually decreases during several generations of cell growth before stopping in others. Mutations isolated in the ColE1 plasmid resulted in only a gradual cessation of ColE1 DNA synthesis over several generations of cell growth at 43°C. Conjugal transfer of the ColE1 and COlV factors occurs normally in the host mutants when the transfer is carried out at the permissive temperature; however, the presence of a group I mutation in the donor cell prohibited conjugal transfer of either plasmid DNA at 43°C to a normal recipient cell. Similarly, the presence of this mutation in the recipient prevented the establishment of COlE1 or COlV in the mutant recipient cell upon conjugation with a normal donor at 43°C. Various host COlE1, replication mutants carrying either ColE1 or ColE2 were also defective in the mitomycin Cinduced production of colicin E1 or colicin E2 at 43°C. The majority of the host mutations examined exhibited a temperature sensitivity to growth in deoxycholate in addition to the inhibition of plasmid DNA replication, suggesting a membrane alteration in these mutants when grown at the restrictive temperature.

1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 49-68
Author(s):  
Yona Kassir ◽  
Giora Simchen

ABSTRACT Vegetative cells carrying the new temperature-sensitive mutation cdc40 arrest at the restrictive temperature with a medial nuclear division phenotype. DNA replication is observed under these conditions, but most cells remain sensitive to hydroxyurea and do not complete the ongoing cell cycle if the drug is present during release from the temperature block. It is suggested that the cdc40 lesion affects an essential function in DNA synthesis. Normal meiosis is observed at the permissive temperature in cdc40 homozygotes. At the restrictive temperature, a full round of premeiotic DNA replication is observed, but neither commitment to recombination nor later meiotic events occur. Meiotic cells that are already committed to the recombination process at the permissive temperature do not complete it if transferred to the restrictive temperature before recombination is realized. These temperature shift-up experiments demonstrate that the CDC40 function is required for the completion of recombination events, as well as for the earlier stage of recombination commitment. Temperature shift-down experiments with cdc40 homozygotes suggest that meiotic segregation depends on the final events of recombination rather than on commitment to recombination.


1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601 ◽  
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


2006 ◽  
Vol 50 (1) ◽  
pp. 362-364 ◽  
Author(s):  
Xilin Zhao ◽  
Muhammad Malik ◽  
Nymph Chan ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.


1995 ◽  
Vol 42 (2) ◽  
pp. 233-239 ◽  
Author(s):  
A Szalewska-Pałasz ◽  
G Wegrzyn

Replication of lambda plasmid DNA is halted in amino acid-starved wild type (stringent) strains whereas it proceeds in relA (relaxed) mutants. The only transcription which could be important in lambda plasmid DNA replication in amino acid-starved Escherichia coli cells is that starting from the pR promoter. Using a fusion which consists of the lacZ gene under the control of bacteriophage lambda pR promoter we found that transcription starting from this promoter was inhibited during the stringent, but not the relaxed, response in E. coli. We confirmed our conclusion by estimating the relative level of the pR transcript by RNA-DNA hybridization. We propose that decreased transcription from the pR promoter which serves as transcriptional activation of ori lambda is responsible for inhibition of lambda plasmid replication during the stringent response. The results presented in this paper, combined with our recent findings (published elsewhere), indicate that the transcriptional activation of ori lambda may be a main regulatory process controlling lambda DNA replication not only during the relaxed response but also in normal growth conditions.


Genetics ◽  
1995 ◽  
Vol 139 (4) ◽  
pp. 1483-1494 ◽  
Author(s):  
Y Cao ◽  
T Kogoma

Abstract The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5'-->3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF+ is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by delta recA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of delta recA polA25::spc cells to UV damage by approximately 10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the delta recA polA25::spc mutant to a level that is 7.3% of the recA+ wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.


2019 ◽  
Vol 166 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Naoto Owada ◽  
Megumi Yoshida ◽  
Kohei Morita ◽  
Kenjiro Yoshimura

Abstract MscL is a mechanosensitive channel that undergoes a global conformational change upon application of membrane stretching. To elucidate how the structural stability and flexibility occur, we isolated temperature-sensitive (Ts) mutants of Escherichia coli MscL that allowed cell growth at 32°C but not at 42°C. Two Ts mutants, L86P and D127V, were identified. The L86P mutation occurred in the second transmembrane helix, TM2. Substitution of residues neighbouring L86 with proline also led to a Ts mutation, but the substitution of L86 with other amino acids did not result in a Ts phenotype, indicating that the Ts phenotype was due to a structural change of TM2 helix by the introduction of a proline residue. The D127V mutation was localized in the electrostatic belt of the bundle of cytoplasmic helices, indicating that stability of the pentameric bundle of the cytoplasmic helix affects MscL structure. Together, this study described a novel class of MscL mutations that were correlated with the thermodynamic stability of the MscL structure.


Sign in / Sign up

Export Citation Format

Share Document