scholarly journals A reference-quality, fully annotated genome from a Puerto Rican individual

Genetics ◽  
2021 ◽  
Author(s):  
Aleksey V Zimin ◽  
Alaina Shumate ◽  
Ida Shinder ◽  
Jakob Heinz ◽  
Daniela Puiu ◽  
...  

Abstract Until 2019, the human genome was available in only one fully-annotated version, GRCh38, which was the result of 18 years of continuous improvement and revision. Despite dramatic improvements in sequencing technology, no other genome was available as an annotated reference until 2019, when the genome of an Ashkenazi individual, Ash1, was released. In this study, we describe the assembly and annotation of a second individual genome, from a Puerto Rican individual whose DNA was collected as part of the Human Pangenome project. The new genome, called PR1, is the first true reference genome created from an individual of African descent. Due to recent improvements in both sequencing and assembly technology, and particularly to the use of the recently completed CHM13 human genome as a guide to assembly, PR1 is more complete and more contiguous than either GRCh38 or Ash1. Annotation revealed 37,755 genes (of which 19,999 are protein-coding), including 12 additional gene copies that are present in PR1 and missing from CHM13. 57 genes have fewer copies in PR1 than in CHM13, 9 map only partially, and 3 genes (all non-coding) from CHM13 are entirely missing from PR1.

2021 ◽  
Author(s):  
Aleksey V Zimin ◽  
Alaina Shumate ◽  
Ida Shinder ◽  
Jakob Heinz ◽  
Daniela Puiu ◽  
...  

Until 2019, the human genome was available in only one fully-annotated version, which was the result of 18 years of continuous improvement and revision. Despite dramatic improvements in sequencing technology, no other individual human genome was available as an annotated reference until 2019, when the genome of an Ashkenazi individual was released. In this study, we describe the assembly and annotation of a second individual genome, from a Puerto Rican individual whose DNA was collected as part of the Human Pangenome project. The new genome, called PR1, is the first true reference genome created from an individual of African descent. Due to recent improvements in both sequencing and assembly technology, PR1 is more complete and more contiguous than either the human reference genome (GRCh38) or the Ashkenazi genome. Annotation revealed 42,217 genes (of which 20,168 are protein-coding), including 107 additional gene copies that are present in PR1 and missing from GRCh38. 180 genes have fewer copies in PR1 than in GRCh38, 13 map only partially, and 3 genes (1 protein-coding) from GRCh38 are entirely missing from PR1.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ran Li ◽  
Xiaomeng Tian ◽  
Peng Yang ◽  
Yingzhi Fan ◽  
Ming Li ◽  
...  

Abstract Background The non-reference sequences (NRS) represent structure variations in human genome with potential functional significance. However, besides the known insertions, it is currently unknown whether other types of structure variations with NRS exist. Results Here, we compared 31 human de novo assemblies with the current reference genome to identify the NRS and their location. We resolved the precise location of 6113 NRS adding up to 12.8 Mb. Besides 1571 insertions, we detected 3041 alternate alleles, which were defined as having less than 90% (or none) identity with the reference alleles. These alternate alleles overlapped with 1143 protein-coding genes including a putative novel MHC haplotype. Further, we demonstrated that the alternate alleles and their flanking regions had high content of tandem repeats, indicating that their origin was associated with tandem repeats. Conclusions Our study detected a large number of NRS including many alternate alleles which are previously uncharacterized. We suggested that the origin of alternate alleles was associated with tandem repeats. Our results enriched the spectrum of genetic variations in human genome.


2019 ◽  
Author(s):  
Ran Li ◽  
Xiaomeng Tian ◽  
Peng Yang ◽  
Yingzhi Fan ◽  
Ming Li ◽  
...  

Abstract Background The non-reference sequences (NRS) represent structure variations in human genome with potential functional significance. However, besides the known insertions, it is currently unknown whether other types of structure variations with NRS exist. Results Here, we compared 31 human de novo assemblies with the current reference genome to identify the NRS and their location. We resolved the precise location of 6,113 NRS adding up to 12.8 Mb. Besides 1,571 insertions, we detected 3,041 alternate alleles, which were defined as having less than 90% (or none) identity with the reference alleles. These alternate alleles overlapped with 1,143 protein-coding genes including a putative novel MHC haplotype. Further, we demonstrated that the alternate alleles and their flanking regions had high content of tandem repeats, indicating that their origin was associated with tandem repeats. Conclusions Our study detected a large number of NRS including many alternate alleles which are previously uncharacterized. We suggested that the origin of alternate alleles was associated with tandem repeats. Our results enriched the spectrum of genetic variations in human genome.


2021 ◽  
Author(s):  
Sergey Nurk ◽  
Sergey Koren ◽  
Arang Rhie ◽  
Mikko Rautiainen ◽  
Andrey V. Bzikadze ◽  
...  

In 2001, Celera Genomics and the International Human Genome Sequencing Consortium published their initial drafts of the human genome, which revolutionized the field of genomics. While these drafts and the updates that followed effectively covered the euchromatic fraction of the genome, the heterochromatin and many other complex regions were left unfinished or erroneous. Addressing this remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium has finished the first truly complete 3.055 billion base pair (bp) sequence of a human genome, representing the largest improvement to the human reference genome since its initial release. The new T2T-CHM13 reference includes gapless assemblies for all 22 autosomes plus chromosome X, corrects numerous errors, and introduces nearly 200 million bp of novel sequence containing 2,226 paralogous gene copies, 115 of which are predicted to be protein coding. The newly completed regions include all centromeric satellite arrays and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies for the first time.


2019 ◽  
Author(s):  
Ran Li ◽  
Xiaomeng Tian ◽  
Peng Yang ◽  
Yingzhi Fan ◽  
Ming Li ◽  
...  

Abstract Background The non-reference sequences (NRS) represent structure variations in human genome with potential functional significance. However, besides the known insertions, it is currently unknown whether other types of structure variations with NRS exist. Results Here, we compared 31 human de novo assemblies with the current reference genome to identify the NRS and their location. We resolved the precise location of 6,113 NRS adding up to 12.8 Mb. Besides 1,571 insertions, we detected 3,041 alternate alleles, which were defined as having less than 90% (or none) identity with the reference alleles. These alternate alleles overlapped with 1,143 protein-coding genes including a putative novel MHC haplotype. Further, we demonstrated that the alternate alleles and their flanking regions had high content of tandem repeats, indicating that their origin was associated with tandem repeats. Conclusions Our study detected a large number of NRS including many alternate alleles which are previously uncharacterized. We suggested that the origin of alternate alleles was associated with tandem repeats. Our results enriched the spectrum of genetic variations in human genome.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Robin-Lee Troskie ◽  
Yohaann Jafrani ◽  
Tim R. Mercer ◽  
Adam D. Ewing ◽  
Geoffrey J. Faulkner ◽  
...  

AbstractPseudogenes are gene copies presumed to mainly be functionless relics of evolution due to acquired deleterious mutations or transcriptional silencing. Using deep full-length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Geneviève Bart ◽  
Daniel Fischer ◽  
Anatoliy Samoylenko ◽  
Artem Zhyvolozhnyi ◽  
Pavlo Stehantsev ◽  
...  

Abstract Background The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Results We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA. Conclusions Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuhua Zhan ◽  
Cortland Griswold ◽  
Lewis Lukens

Abstract Background Genetic variation for gene expression is a source of phenotypic variation for natural and agricultural species. The common approach to map and to quantify gene expression from genetically distinct individuals is to assign their RNA-seq reads to a single reference genome. However, RNA-seq reads from alleles dissimilar to this reference genome may fail to map correctly, causing transcript levels to be underestimated. Presently, the extent of this mapping problem is not clear, particularly in highly diverse species. We investigated if mapping bias occurred and if chromosomal features associated with mapping bias. Zea mays presents a model species to assess these questions, given it has genotypically distinct and well-studied genetic lines. Results In Zea mays, the inbred B73 genome is the standard reference genome and template for RNA-seq read assignments. In the absence of mapping bias, B73 and a second inbred line, Mo17, would each have an approximately equal number of regulatory alleles that increase gene expression. Remarkably, Mo17 had 2–4 times fewer such positively acting alleles than did B73 when RNA-seq reads were aligned to the B73 reference genome. Reciprocally, over one-half of the B73 alleles that increased gene expression were not detected when reads were aligned to the Mo17 genome template. Genes at dissimilar chromosomal ends were strongly affected by mapping bias, and genes at more similar pericentromeric regions were less affected. Biased transcript estimates were higher in untranslated regions and lower in splice junctions. Bias occurred across software and alignment parameters. Conclusions Mapping bias very strongly affects gene transcript abundance estimates in maize, and bias varies across chromosomal features. Individual genome or transcriptome templates are likely necessary for accurate transcript estimation across genetically variable individuals in maize and other species.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Krisztian Buza ◽  
Bartek Wilczynski ◽  
Norbert Dojer

Background. Next-generation sequencing technologies are now producing multiple times the genome size in total reads from a single experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and the reference genome is used.Results. We provide a new approach that allows researchers to reconstruct genomes very closely related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new, modified reference sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its implementation called RECORD. We evaluate RECORD on both simulated and real data. We made our software publicly available on sourceforge.Conclusion. Our tests show that on closely related sequences RECORD outperforms more general assisted-assembly software.


2021 ◽  
Author(s):  
Jie Wang ◽  
Shiming Li ◽  
Lei Lan ◽  
Mushan Xie ◽  
Shu Cheng ◽  
...  

Abstract Background: Setaria italica is the second-most widely planted species of millets in the world and an important model grain crop for the research of C4 photosynthesis and abiotic stress tolerance. Through three genomes assembly and annotation efforts, all genomes were based on next generation sequencing technology, which limited the genome continuity. Results: Here we report a high-quality whole-genome of new cultivar Huagu11, using single-molecule real-time sequencing and High-throughput chromosome conformation capture (Hi-C) mapping technologies. The total assembly size of the Huagu11 genome was 408.37 Mb with a scaffold N50 size of 45.89 Mb. Compared with the other three reported millet genomes based on the next generation sequencing technology, the Huagu11 genome had the highest genomic continuity. Intraspecies comparison showed about 94.97% and 94.66% of the Yugu1 and Huagu11 genomes, respectively, were able to be aligned as one-to-one blocks with four chromosome inversion. The Huagu11 genome contained approximately 19.43 Mb Presence/absence Variation (PAV) with 627 protein-coding transcripts, while Yugu1 genomes had 20.53 Mb PAV sequences encoding 737 proteins. Overall, 969,596 Single-nucleotide polymorphism (SNPs) and 156,282 insertion-deletion (InDels) were identified between these two genomes. The genome comparison between Huagu11 and Yugu1 should reflect the genetic identity and variation between the cultivars of foxtail millet to a certain extent. The Ser-626-Aln substitution in acetohydroxy acid synthase (AHAS) was found to be relative to the imazethapyr tolerance in Huagu11. Conclusions: A new improved high-quality reference genome sequence of Setaria italica was assembled, and intraspecies genome comparison determined the genetic identity and variation between the cultivars of foxtail millet. Based on the genome sequence, it was found that the Ser-626-Aln substitution in AHAS was responsible for the imazethapyr tolerance in Huagu11. The new improved reference genome of Setaria italica will promote the genic and genomic studies of this species and be beneficial for cultivar improvement.


Sign in / Sign up

Export Citation Format

Share Document