Sarcopenic obesity and amino acids: Concord Health and Ageing in Men Project

Author(s):  
David G Le Couteur ◽  
David J Handelsman ◽  
Fiona Stanaway ◽  
Louise M Waite ◽  
Fiona M Blyth ◽  
...  

Abstract Although characteristic changes in amino acid concentrations occur in obesity and sarcopenia, amino acids concentrations have not been reported in sarcopenic obesity. We studied n=831 men aged 75 years and older from the five-year follow-up of the Concord Health and Ageing in Men Project (CHAMP). Sarcopenia was defined using the Foundation of the National Institutes of Health (FNIH) criteria and obesity was defined as >30% fat mass. There were 31 men (3.7%) who had sarcopenic obesity. Branched chain amino acids were elevated in the obese (but not sarcopenic) group (n=348) but reduced in both the sarcopenic (but not obese) (n=44) and the sarcopenic obese groups. Apart from this, most of the amino acid concentrations were between those for the obese and the sarcopenic groups. Yet despite low concentrations of branched chain amino acids, the sarcopenic obese group had indications of insulin resistance and diabetes mellitus (fasting glucose and insulin concentrations, homeostatic model assessment (HOMA-IR) and percentage of participants taking diabetes medications) that were similar to the obese group. In summary, sarcopenic obese subjects did not have a unique amino acid signature. In obesity, elevated branched chain amino acids are not a prerequisite for insulin resistance and diabetes if obesity is associated with sarcopenia.

1983 ◽  
Vol 244 (2) ◽  
pp. E151-E158 ◽  
Author(s):  
J. T. Brosnan ◽  
K. C. Man ◽  
D. E. Hall ◽  
S. A. Colbourne ◽  
M. E. Brosnan

Amino acid concentrations in whole blood, liver, kidney, skeletal muscle, and brain were measured and arteriovenous differences calculated for head, hindlimb, kidney, gut, and liver in control and streptozotocin-diabetic rats. In the control rats, glutamine was released by muscle and utilized by intestine, intestine released citrulline and alanine, liver removed alanine, and the kidneys removed glycine and produced serine. In diabetic rats, the major changes from the pattern of fluxes seen in the normal rat were the release of many amino acids from muscle, with glutamine and alanine predominating, and the uptake of these amino acids by the liver. Glutamine removal by the intestine was suppressed in diabetes, but a large renal uptake of glutamine was evident. Branched-chain amino acids were removed by the diabetic brain, and consequently, brain levels of a number of large neutral amino acids were decreased in diabetes.


2004 ◽  
Vol 82 (7) ◽  
pp. 506-514 ◽  
Author(s):  
Enoka P Wijekoon ◽  
Craig Skinner ◽  
Margaret E Brosnan ◽  
John T Brosnan

We investigated amino acid metabolism in the Zucker diabetic fatty (ZDF Gmi fa/fa) rat during the prediabetic insulin-resistant stage and the frank type 2 diabetic stage. Amino acids were measured in plasma, liver, and skeletal muscle, and the ratios of plasma/liver and plasma/skeletal muscle were calculated. At the insulin-resistant stage, the plasma concentrations of the gluconeogenic amino acids aspartate, serine, glutamine, glycine, and histidine were decreased in the ZDF Gmi fa/fa rats, whereas taurine, α-aminoadipic acid, methionine, phenylalanine, tryptophan, and the 3 branched-chain amino acids were significantly increased. At the diabetic stage, a larger number of gluconeogenic amino acids had decreased plasma concentrations. The 3 branched-chain amino acids had elevated plasma concentrations. In the liver and the skeletal muscles, concentrations of many of the gluconeogenic amino acids were lower at both stages, whereas the levels of 1 or all of the branched-chain amino acids were elevated. These changes in amino acid concentrations are similar to changes seen in type 1 diabetes. It is evident that insulin resistance alone is capable of bringing about many of the changes in amino acid metabolism observed in type 2 diabetes.Key words: plasma amino acids, liver amino acids, muscle amino acids, gluconeogenesis.


1981 ◽  
Vol 50 (1) ◽  
pp. 41-44 ◽  
Author(s):  
G. L. Dohm ◽  
G. R. Beecher ◽  
R. Q. Warren ◽  
R. T. Williams

Levels of free amino acids in muscle, liver, and plasma were measured in rats that had either swum (1 or 2 h) or run (until exhausted). Exercise lowered alanine levels in all three tissues except for liver of exhausted rats. Exercise decreased the plasma levels of the acidic amino acids and their amides. Glutamate and glutamine levels were depressed in muscle, and the glutamine level was lowered in liver by exercise. Aspartate concentration was lowered by exercise in liver but elevated in muscle. The branched-chain amino acids were generally elevated by exercise as were tyrosine, phenylalanine, methionine, and lysine. Plasma 3-methylhistidine concentration was also elevated by an exercise bout. The changes observed in the amino acid contents of muscle, liver, and plasma are consistent with the increase in protein degradation during exercise that we previously reported. The lowered levels of some amino acids (e.g., alanine, glutamine, glutamate) seem to suggest that amino acid catabolism and/or gluconeogenesis is increased by exercise.


2018 ◽  
Vol 88 (1-2) ◽  
pp. 80-89 ◽  
Author(s):  
Zahra Shakibay Novin ◽  
Saeed Ghavamzadeh ◽  
Alireza Mehdizadeh

Abstract. Branched chain amino acids (BCAA), with vitamin B6 have been reported to improve fat metabolism and muscle synthesis. We hypothesized that supplementation with BCAA and vitamin B6 would result in more weight loss and improve body composition and blood markers related to cardiovascular diseases. Our aim was to determine whether the mentioned supplementation would affect weight loss, body composition, and cardiovascular risk factors during weight loss intervention. To this end, we performed a placebo-controlled randomized clinical trial in 42 overweight and obese women (BMI = 25–34.9 kg/m2). Taking a four-week moderate deficit calorie diet (–500 kcal/day), participants were randomized to receive BCAA (6 g/day) with vitamin B6 (40 mg/day) or placebo. Body composition variables measured with the use of bioelectrical impedance analysis, homeostatic model assessment, and plasma insulin, Low density lipoprotein, High density lipoprotein, Total Cholesterol, Triglyceride, and fasting blood sugar were measured. The result indicated that, weight loss was not significantly affected by BCAA and vitamin B6 supplementation (–2.43 ± 1.02 kg) or placebo (–1.64 ± 1.48 kg). However, significant time × treatment interactions in waist to hip ratio (P = 0.005), left leg lean (P = 0.004) and right leg lean (P = 0.023) were observed. Overall, supplementation with BCAA and vitamin B6 could preserve legs lean and also attenuated waist to hip ratio.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Imran Ramzan ◽  
Moira Taylor ◽  
Beth Phillips ◽  
Daniel Wilkinson ◽  
Kenneth Smith ◽  
...  

Elevated circulating branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) are associated with obesity and type 2 diabetes (T2D). Reducing circulatory BCAAs by dietary restriction was suggested to mitigate these risks in rodent models, but this is a challenging paradigm to deliver in humans. We aimed to design and assess the feasibility of a diet aimed at reducing circulating BCAA concentrations in humans, while maintaining energy balance and overall energy/protein intake. Twelve healthy individuals were assigned to either a 7-day BCAA-restricted diet or a 7-day control diet. Diets were iso-nitrogenous and iso-caloric, with only BCAA levels differing between the two. The BCAA-restricted diet significantly reduced circulating BCAA concentrations by ~50% i.e., baseline 437 ± 60 to 217 ± 40 µmol/L (p < 0.005). Individually, both valine (245 ± 33 to 105 ± 23 µmol/L; p < 0.0001), and leucine (130 ± 20 to 75 ± 13 µmol/L; p < 0.05), decreased significantly in response to the BCAA-restricted diet. The BCAA-restricted diet marginally lowered Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) levels: baseline 1.5 ± 0.2 to 1.0 ± 0.1; (p = 0.096). We successfully lowered circulating BCAAs by 50% while maintaining iso-nitrogenous, iso-caloric dietary intakes, and while meeting the recommended daily allowances (RDA) for protein requirements. The present pilot study represents a novel dietary means by which to reduce BCAA, and as such, provides a blueprint for a potential dietary therapeutic in obesity/diabetes.


Sign in / Sign up

Export Citation Format

Share Document