scholarly journals Lighten Up! Postural Instructions Affect Static and Dynamic Balance in Healthy Older Adults

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Rajal G Cohen ◽  
Jason L Baer ◽  
Ramyaa Ravichandra ◽  
Daniel Kral ◽  
Craig McGowan ◽  
...  

Abstract Background and Objectives Increased fall risk in older adults is associated with declining balance. Previous work showed that brief postural instructions can affect balance control in older adults with Parkinson’s disease. Here, we assessed the effects of brief instructions on static and dynamic balance in healthy older adults. Research Design and Methods Nineteen participants practiced three sets of instructions, then attempted to implement each instructional set during: (1) quiet standing on foam for 30 s with eyes open; (2) a 3-s foot lift. “Light” instructions relied on principles of reducing excess tension while encouraging length. “Effortful” instructions relied on popular concepts of effortful posture correction. “Relax” instructions encouraged minimization of effort. We measured kinematics and muscle activity. Results During quiet stance, Effortful instructions increased mediolateral jerk and path length. In the foot lift task, Light instructions led to the longest foot-in-air duration and the smallest anteroposterior variability of the center of mass, Relax instructions led to the farthest forward head position, and Effortful instructions led to the highest activity in torso muscles. Discussion and Implications Thinking of upright posture as effortless may reduce excessive co-contractions and improve static and dynamic balance, while thinking of upright posture as inherently effortful may make balance worse. This may partly account for the benefits of embodied mindfulness practices such as tai chi and Alexander technique for balance in older adults. Pending larger-scale replication, this discovery may enable physiotherapists and teachers of dance, exercise, and martial arts to improve balance and reduce fall risk in their older students and clients simply by modifying how they talk about posture.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11221
Author(s):  
Daniel Schmidt ◽  
Felipe P. Carpes ◽  
Thomas L. Milani ◽  
Andresa M.C. Germano

Background Studies demonstrated that the older adults can be more susceptible to balance instability after acute visual manipulation. There are different manipulation approaches used to investigate the importance of visual inputs on balance, e.g., eyes closed and blackout glasses. However, there is evidence that eyes open versus eyes closed results in a different organization of human brain functional networks. It is, however, unclear how different visual manipulations affect balance, and whether such effects differ between young and elderly persons. Therefore, this study aimed to determine whether different visual manipulation approaches affect quasi-static and dynamic balance responses differently, and to investigate whether balance responses of young and older adults are affected differently by these various visual conditions. Methods Thirty-six healthy participants (20 young and 16 older adults) performed balance tests (quasi-static and unexpected perturbations) under four visual conditions: Eyes Open, Eyes Closed, Blackout Glasses, and Dark Room. Center of pressure (CoP) and muscle activation (EMG) were quantified. Results As expected, visual deprivation resulted in larger CoP excursions and higher muscle activations during balance tests for all participants. Surprisingly, the visual manipulation approach did not influence balance control in either group. Furthermore, quasi-static and dynamic balance control did not differ between young or older adults. The visual system plays an important role in balance control, however, similarly for both young and older adults. Different visual deprivation approaches did not influence balance results, meaning our results are comparable between participants of different ages. Further studies should investigate whether a critical illumination level may elicit different postural responses between young and older adults.


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0015
Author(s):  
Tracy Zaslow ◽  
Camille Burton ◽  
Nicole M. Mueske ◽  
Adriana Conrad-Forrest ◽  
Bianca Edison ◽  
...  

Background: Previous research has identified deficient dual-task balance control at the time of return to play (RTP) and possible worsening after RTP in older adolescents/young adults with concussion. These findings have not been investigated in younger patients with concussion. Hypothesis/Purpose: We hypothesized that concussed adolescents would have slower walking speed and increased medial-lateral (ML) center of mass (COM) movement, which would normalize by the time of RTP but worsen after resuming activity. Methods: 13 adolescent concussion patients (7 male; age 10-17 years) were prospectively evaluated at their initial visit (IV) (mean 18, range 4-43 days post-concussion), at RTP clearance (mean 46, range 12-173 days post-concussion), and one month later (mean 26, range 20-41 days post-RTP) along with 11 controls (3 male) seen for similarly timed visits. Standing balance was assessed using range and root mean squared (RMS) COM motion in the anterior-posterior (AP) and ML directions during standing on both legs with eyes open while performing quiet standing, dual-task audio Stroop, side-to-side head turns, and side-to-side thumb tracking tasks. Dynamic balance was assessed using walking speed and COM ML range and velocity during walking alone and with side-to-side head turns and verbal fluency (reciting words starting with “F”) dual tasks. Patients were compared against controls using t-tests, and changes over time were evaluated using linear mixed-effects regression. Results: During standing, patients had higher COM ML RMS than controls at IV during head turns and higher COM AP range during thumb tracking. COM ML motion decreased from IV to RTP (head turns range -6.5mm, p=0.058; head turns RMS -16.8mm, p=0.002; thumb range 9.2mm, p=0.012) and increased from RTP to 1 month follow-up (head turns RMS +10.0mm, p=0.040; Stroop RMS +8.4mm, p=0.086). Patients walked slower than controls at IV during all tasks, and COM ML range was higher in patients vs. controls during verbal fluency at IV and RTP. Walking speed increased from IV to RTP during verbal fluency (+7.8cm/s, p=0.044), from RTP to post-RTP in single task walking (+6.1cm/s, p=0.041), and at each successive visit during head turns (+6.0cm/s and +6.5cm/s, p<0.07). COM ML range also decreased in patients from IV to RTP with verbal fluency (-14.7mm, p=0.011) and from RTP to post-RTP in single task walking ( 4.0mm, p=0.061). Conclusion: Adolescent concussion patients had deficits in static and dynamic balance control at initial presentation. This tended to improve by RTP and only worsened post-RTP for dual-task ML control during standing, suggesting that current conservative treatment protocols are appropriate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alex Rizzato ◽  
Antonio Paoli ◽  
Marta Andretta ◽  
Francesca Vidorin ◽  
Giuseppe Marcolin

The aim of this study was to investigate if the combination of static and dynamic postural balance assessments gives more accurate indications on balance performance among healthy older adults. We also aimed at studying the effect of a dual-task condition on static and dynamic postural balance control. Fifty-seven healthy older adults (age = 73.2 ± 5.0 year, height = 1.66 ± 0.08 m, and body mass = 72.8 ± 13.8 kg) completed the study. Static and dynamic balance were assessed both in single-task and dual-task conditions through a force plate and an oscillating platform. The dominant handgrip strength was also measured with a dynamometer. Pearson’s correlation revealed non-statistically significant correlations between static and dynamic balance performance. The dual-task worsened the balance performance more in the dynamic (+147.8%) than in the static (+25.10%, +43.45%, and +72.93% for ellipse area, sway path, and AP oscillations, respectively) condition (p &lt; 0.001). A weak correlation was found between dynamic balance performance and handgrip strength both in the single (p &lt; 0.05; r = −0.264) and dual (p &lt; 0.05; r = −0.302) task condition. The absence of correlations between static and dynamic balance performance suggests including both static and dynamic balance tests in the assessment of postural balance alterations among older adults. Since cognitive-interference tasks exacerbated the degradation of the postural control performance, dual-task condition should also be considered in the postural balance assessment.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
H Tuna ◽  
Ö Bozan ◽  
B Gürpınar ◽  
N İlçin

Objective: This study aimed to report the fear of falling and assess its associations with several fall-related characteristics and functional fitness parameters among older adults living in the rest home. Methods: Seventy-eight older adults aged between 65-94 years were included in the study. History of falling and the number of risk factors for falling were recorded. Fear of falling was evaluated with The Falls Efficacy ScaleInternational. Functional fitness was assessed with Senior Fitness Test, including tests for the functional measurement of strength, flexibility, aerobic endurance and dynamic balance. Result: The mean age of participants was 78.46±7.16 years. There were correlations exist between fear of falling and number of fall risk factors, dynamic balance, upper body flexibility and aerobic endurance (p<0.05). Multiple linear regression analysis showed that the parameters with the highest determinants of fear of falling were the dynamic balance and history of falling (p<0.05). Conclusions: In our study, history of falling, number of fall risk factors, flexibility for the upper body, aerobic endurance and dynamic balance were parameters related to fear of falling among older adults, but the most influential factors in fear of falling were dynamic balance and history of falling.


2018 ◽  
Vol 108 (2) ◽  
pp. 126-139 ◽  
Author(s):  
Amy Muchna ◽  
Bijan Najafi ◽  
Christopher S. Wendel ◽  
Michael Schwenk ◽  
David G. Armstrong ◽  
...  

Background:Research on foot problems and frailty is sparse and could advance using wearable sensor–based measures of gait, balance, and physical activity (PA). This study examined the effect of foot problems on the likelihood of falls, frailty syndrome, motor performance, and PA in community-dwelling older adults.Methods:Arizona Frailty Cohort Study participants (community-dwelling adults aged ≥65 years without baseline cognitive deficit, severe movement disorders, or recent stroke) underwent Fried frailty and foot assessment. Gait, balance (bipedal eyes open and eyes closed), and spontaneous PA over 48 hours were measured using validated wearable sensor technologies.Results:Of 117 participants, 41 (35%) were nonfrail, 56 (48%) prefrail, and 20 (17%) frail. Prevalence of foot problems (pain, peripheral neuropathy, or deformity) increased significantly as frailty category worsened (any problem: 63% in nonfrail, 80% in prefrail [odds ratio (OR) = 2.0], and 95% in frail [OR = 8.3]; P = .03 for trend) due to associations between foot problems and both weakness and exhaustion. Foot problems were associated with fear of falling but not with fall history or incident falls over 6 months. Foot pain and peripheral neuropathy were associated with lower gait speed and stride length; increased double support time; increased mediolateral sway of center of mass during walking, age adjusted; decreased eyes open sway of center of mass and ankle during quiet standing, age adjusted; and lower percentage walking, percentage standing, and total steps per day.Conclusions:Foot problems were associated with frailty level and decreased motor performance and PA. Wearable technology is a practical way to screen for deterioration in gait, balance, and PA that may be associated with foot problems. Routine assessment and management of foot problems could promote earlier intervention to retain motor performance and manage fear of falling in older adults, which may ultimately improve healthy aging and reduce risk of frailty.


2020 ◽  
Vol 36 (5) ◽  
pp. 298-306 ◽  
Author(s):  
Anna Lee ◽  
Tanvi Bhatt ◽  
Xuan Liu ◽  
Yiru Wang ◽  
Shuaijie Wang ◽  
...  

The purpose was to examine and compare the longer-term generalization between 2 different practice dosages for a single-session treadmill slip-perturbation training when reexposed to an overground slip 6 months later. A total of 45 older adults were conveniently assigned to either 24 or 40 slip-like treadmill perturbation trials or a third control group. Overground slips were given immediately after initial training, and at 6 months after initial training in order to examine immediate and longer-term effects. The performance (center of mass stability and vertical limb support) and fall percentage from the laboratory-induced overground slips (at initial posttraining and at 6 mo) were measured and compared between groups. Both treadmill slip-perturbation groups showed immediate generalization at the initial posttraining test and longer-term generalization at the 6-month retest. The higher-practice-dosage group performed significantly better than the control group (P < .05), with no difference between the lower-practice-dosage and the control groups at the 6-month retest (P > .05). A single session of treadmill slip-perturbation training showed a positive effect for reducing older adults’ fall risk for laboratory-induced overground slips. A higher-practice dosage of treadmill slip perturbations could be more beneficial for further reducing fall risk.


Sign in / Sign up

Export Citation Format

Share Document