scholarly journals DUAL-TASK BALANCE CONTROL IN ADOLESCENT ATHLETES FOLLOWING CONCUSSION

2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0015
Author(s):  
Tracy Zaslow ◽  
Camille Burton ◽  
Nicole M. Mueske ◽  
Adriana Conrad-Forrest ◽  
Bianca Edison ◽  
...  

Background: Previous research has identified deficient dual-task balance control at the time of return to play (RTP) and possible worsening after RTP in older adolescents/young adults with concussion. These findings have not been investigated in younger patients with concussion. Hypothesis/Purpose: We hypothesized that concussed adolescents would have slower walking speed and increased medial-lateral (ML) center of mass (COM) movement, which would normalize by the time of RTP but worsen after resuming activity. Methods: 13 adolescent concussion patients (7 male; age 10-17 years) were prospectively evaluated at their initial visit (IV) (mean 18, range 4-43 days post-concussion), at RTP clearance (mean 46, range 12-173 days post-concussion), and one month later (mean 26, range 20-41 days post-RTP) along with 11 controls (3 male) seen for similarly timed visits. Standing balance was assessed using range and root mean squared (RMS) COM motion in the anterior-posterior (AP) and ML directions during standing on both legs with eyes open while performing quiet standing, dual-task audio Stroop, side-to-side head turns, and side-to-side thumb tracking tasks. Dynamic balance was assessed using walking speed and COM ML range and velocity during walking alone and with side-to-side head turns and verbal fluency (reciting words starting with “F”) dual tasks. Patients were compared against controls using t-tests, and changes over time were evaluated using linear mixed-effects regression. Results: During standing, patients had higher COM ML RMS than controls at IV during head turns and higher COM AP range during thumb tracking. COM ML motion decreased from IV to RTP (head turns range -6.5mm, p=0.058; head turns RMS -16.8mm, p=0.002; thumb range 9.2mm, p=0.012) and increased from RTP to 1 month follow-up (head turns RMS +10.0mm, p=0.040; Stroop RMS +8.4mm, p=0.086). Patients walked slower than controls at IV during all tasks, and COM ML range was higher in patients vs. controls during verbal fluency at IV and RTP. Walking speed increased from IV to RTP during verbal fluency (+7.8cm/s, p=0.044), from RTP to post-RTP in single task walking (+6.1cm/s, p=0.041), and at each successive visit during head turns (+6.0cm/s and +6.5cm/s, p<0.07). COM ML range also decreased in patients from IV to RTP with verbal fluency (-14.7mm, p=0.011) and from RTP to post-RTP in single task walking ( 4.0mm, p=0.061). Conclusion: Adolescent concussion patients had deficits in static and dynamic balance control at initial presentation. This tended to improve by RTP and only worsened post-RTP for dual-task ML control during standing, suggesting that current conservative treatment protocols are appropriate.

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Rajal G Cohen ◽  
Jason L Baer ◽  
Ramyaa Ravichandra ◽  
Daniel Kral ◽  
Craig McGowan ◽  
...  

Abstract Background and Objectives Increased fall risk in older adults is associated with declining balance. Previous work showed that brief postural instructions can affect balance control in older adults with Parkinson’s disease. Here, we assessed the effects of brief instructions on static and dynamic balance in healthy older adults. Research Design and Methods Nineteen participants practiced three sets of instructions, then attempted to implement each instructional set during: (1) quiet standing on foam for 30 s with eyes open; (2) a 3-s foot lift. “Light” instructions relied on principles of reducing excess tension while encouraging length. “Effortful” instructions relied on popular concepts of effortful posture correction. “Relax” instructions encouraged minimization of effort. We measured kinematics and muscle activity. Results During quiet stance, Effortful instructions increased mediolateral jerk and path length. In the foot lift task, Light instructions led to the longest foot-in-air duration and the smallest anteroposterior variability of the center of mass, Relax instructions led to the farthest forward head position, and Effortful instructions led to the highest activity in torso muscles. Discussion and Implications Thinking of upright posture as effortless may reduce excessive co-contractions and improve static and dynamic balance, while thinking of upright posture as inherently effortful may make balance worse. This may partly account for the benefits of embodied mindfulness practices such as tai chi and Alexander technique for balance in older adults. Pending larger-scale replication, this discovery may enable physiotherapists and teachers of dance, exercise, and martial arts to improve balance and reduce fall risk in their older students and clients simply by modifying how they talk about posture.


2016 ◽  
Vol 96 (3) ◽  
pp. 284-292 ◽  
Author(s):  
Hui-Ya Chen ◽  
Pei-Fang Tang

Background Dual-task Timed “Up & Go” (TUG) tests are likely to have applications different from those of a single-task TUG test and may have different contributing factors. Objective The purpose of this study was to compare factors contributing to performance on single- and dual-task TUG tests. Design This investigation was a cross-sectional study. Methods Sixty-four adults who were more than 50 years of age and dwelled in the community were recruited. Interviews and physical examinations were performed to identify potential contributors to TUG test performance. The time to complete the single-task TUG test (TUGsingle) or the dual-task TUG test, which consisted of completing the TUG test while performing a serial subtraction task (TUGcognitive) or while carrying water (TUGmanual), was measured. Results Age, hip extensor strength, walking speed, general mental function, and Stroop scores for word and color were significantly associated with performance on all TUG tests. Hierarchical multiple regression models, without the input of walking speed, revealed different independent factors contributing to TUGsingle performance (Mini-Mental Status Examination score, β=−0.32), TUGmanual performance (age, β=0.35), and TUGcognitive performance (Stroop word score, β=−0.40; Mini-Mental Status Examination score, β=−0.31). Limitations At least 40% of the variance in the performance on the 3 TUG tests was not explained by common clinical measures, even when the factor of walking speed was considered. However, this study successfully identified some important factors contributing to performance on different TUG tests, and other studies have reported similar findings for single-task TUG test and dual-task gait performance. Conclusions Although the TUGsingle and the TUGcognitive shared general mental function as a common factor, the TUGmanual was uniquely influenced by age and the TUGcognitive was uniquely influenced by focused attention. These results suggest that both common and unique factors contribute to performance on single- and dual-task TUG tests and suggest important applications of the combined use of the 3 TUG tests.


2021 ◽  
Vol 17 (6) ◽  
pp. e1008369
Author(s):  
Maarten Afschrift ◽  
Friedl De Groote ◽  
Ilse Jonkers

Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.


2017 ◽  
Vol 126 (1) ◽  
pp. 148-157 ◽  
Author(s):  
Roman Schniepp ◽  
Raimund Trabold ◽  
Alexander Romagna ◽  
Farhoud Akrami ◽  
Kristin Hesselbarth ◽  
...  

OBJECTIVE The determination of gait improvement after lumbar puncture (LP) in idiopathic normal-pressure hydrocephalus (iNPH) is crucial, but the best time for such an assessment is unclear. The authors determined the time course of improvement in walking after LP for single-task and dual-task walking in iNPH. METHODS In patients with iNPH, sequential recordings of gait velocity were obtained prior to LP (time point [TP]0), 1–8 hours after LP (TP1), 24 hours after LP (TP2), 48 hours after LP (TP3), and 72 hours after LP (TP4). Gait analysis was performed using a pressure-sensitive carpet (GAITRite) under 4 conditions: walking at preferred velocity (STPS), walking at maximal velocity (STMS), walking while performing serial 7 subtractions (dual-task walking with serial 7 [DTS7]), and walking while performing verbal fluency tasks (dual-task walking with verbal fluency [DTVF]). RESULTS Twenty-four patients with a mean age of 76.1 ± 7.8 years were included in this study. Objective responder status moderately coincided with the self-estimation of the patients with subjective high false-positive results (83%). The extent of improvement was greater for single-task walking than for dual-task walking (p < 0.05). Significant increases in walking speed were found at TP2 for STPS (p = 0.042) and DTVF (p = 0.046) and at TP3 for STPS (p = 0.035), DTS7 (p = 0.042), and DTVF (p = 0.044). Enlargement of the ventricles (Evans Index) positively correlated with early improvement. Gait improvement at TP3 correlated with the shunt response in 18 patients. CONCLUSIONS Quantitative gait assessment in iNPH is important due to the poor self-evaluation of the patients. The maximal increase in gait velocity can be observed 24–48 hours after the LP. This time point is also best to predict the response to shunting. For dual-task paradigms, maximal improvement appears to occur later (48 to 72 hours). Assessment of gait should be performed at Day 2 or 3 after LP.


2020 ◽  
Author(s):  
Gabriella H Small ◽  
Lydia G Brough ◽  
Richard Neptune

Abstract BackgroundFor an individual to walk, they must maintain control of their dynamic balance. However, situations that present an increased cognitive load may impair an individual’s ability to control their balance. While dual-task studies have analyzed walking-while-talking conditions, few studies have focused specifically on the influence of cognitive load on balance control. The purpose of this study was to assess how individuals prioritize their cognitive resources and control dynamic balance during dual-task conditions of varying difficulty. MethodsYoung healthy adults (n = 15) performed two single-task conditions (spelling while standing and walking with no cognitive load) and three dual-task conditions (walking with increasing cognitive load: attentive listening, spelling short words backwards and spelling long words backwards). Repeated measures analysis of variances were used to assess differences in balance outcome measures and cognitive performance. ResultsCognitive performance did not change between the single- and dual-task conditions as measured by percent error and response rate ( p = 0.3). Balance control, assessed as the range of whole-body angular momentum, did not change between the no load and listening conditions, but decreased during the short and long spelling conditions ( p < 0.001). ConclusionsThese results showed that balance control decreases during dual-task treadmill walking with increased cognitive loads, but that cognitive performance does not change. The decrease in balance control suggests that participants prioritized cognitive performance over balance control during these dual-task walking conditions. This work offers additional insight into the automaticity of walking and task-prioritization in healthy individuals and provides the basis for future studies to determine differences in neurologically impaired populations.


2010 ◽  
Vol 100 (4) ◽  
pp. 242-250 ◽  
Author(s):  
James S. Wrobel ◽  
Sarah Edgar ◽  
Dana Cozzetto ◽  
James Maskill ◽  
Paul Peterson ◽  
...  

Background: This pilot study examined the effect of custom and prefabricated foot orthoses on self-selected walking speed, walking speed variability, and dynamic balance in the mediolateral direction. Methods: The gait of four healthy participants was analyzed with a body-worn sensor system across a distance of at least 30 m outside of the gait laboratory. Participants walked at their habitual speed in four conditions: barefoot, regular shoes, prefabricated foot orthoses, and custom foot orthoses. Results: In the custom foot orthoses condition, gait speed was improved on average 13.5% over the barefoot condition and 9.8% over the regular shoe condition. The mediolateral range of motion of center of mass was reduced 55% and 56% compared with the shoes alone and prefabricated foot orthoses conditions, respectively. This may suggest better gait efficiency and lower energy cost with custom foot orthoses. This tendency remained after normalizing center of mass by gait speed, suggesting that irrespective of gait speed, custom foot orthoses improve center of mass motion in the mediolateral direction compared with other footwear conditions. Gait intercycle variability, measured by intercycle coefficient of variation of gait speed, was decreased on average by 25% and 19% compared with the barefoot and shoes-alone conditions, respectively. The decrease in gait unsteadiness after wearing custom foot orthoses may suggest improved proprioception from the increased contact area of custom foot orthoses versus the barefoot condition. Conclusions: These findings may open new avenues for objective assessment of the impact of prescribed footwear on dynamic balance and spatiotemporal parameters of gait and assess gait adaptation after use of custom foot orthoses. (J Am Podiatr Med Assoc 100(4): 242–250, 2010)


2013 ◽  
Vol 103 (6) ◽  
pp. 516-533 ◽  
Author(s):  
Anna L. Hatton ◽  
Keith Rome ◽  
John Dixon ◽  
Denis J. Martin ◽  
Patrick O. McKeon

Footwear interventions, including shoe insoles and foot orthoses, have the capacity to enhance balance control and gait in older people. This review assessed the evidence for the effect of footwear interventions on static and dynamic balance performance and gait in older populations and explored proposed theories for underlying sensorimotor and mechanical mechanisms. We searched the Medline, EMBASE, CINAHL (the Cumulative Index to Nursing and Allied Health Literature), and AMED databases and conducted hand searches. Of 115 relevant articles screened, 14 met the predefined inclusion criteria. Articles were grouped into one of three categories based on balance task (static balance performance during quiet standing, dynamic balance performance during walking, and dynamic balance performance during perturbed standing or functional tasks) and were scored for methodological quality using the Downs and Black Quality Index tool. Footwear interventions seem to alter underlying strategies controlling static and dynamic movement patterns through a combination of sensorimotor and mechanical mechanisms in older people, including those with chronic sensory and musculoskeletal conditions. Evidence shows a consistent trend toward footwear interventions markedly improving lateral stability measures, which are predictors of falls in the elderly. In-depth investigation of neurophysiologic responses to footwear interventions is necessary to help confirm any sensorimotor adaptations. The long-term effects of footwear interventions on balance, gait, and the prevention of falls in older people require further investigation. (J Am Podiatr Med Assoc 103(6): 516–533, 2013)


Author(s):  
Tiziana Lencioni ◽  
Denise Anastasi ◽  
Ilaria Carpinella ◽  
Anna Castagna ◽  
Alessandro Crippa ◽  
...  

Maintaining a stable gait requires a dynamic balance control, that can be altered in persons with Multiple Sclerosis (MS), Stroke (ST), and Parkinson’s disease (PD). The understanding of the strategy for Center of Mass (CoM) positioning adopted by patients during walking is important to be able to program treatments aimed at improving gait control and preventing falls. Forty-four persons with a mild-to-moderate neurological disorder (20 with MS, 14 with ST, 10 with PD) underwent clinical examination and gait analysis. Ten Healthy Subjects (HS) walking at matched speed provided the normative data. Dynamic balance was assessed using the margin of stability (MoS). It was calculated as the distance between the extrapolated Center of Pressure and the extrapolated CoM at mid-stance. The MoS values for lower limbs were calculated in patients and compared with speed-matched values of HS. Persons with neurological disorder showed increased MoS in the medio-lateral direction with respect to HS. Within-group comparison analysis showed a symmetry between lower limbs in HS (Mean (95%CI) [mm], dominant vs non-dominant limb, 43.3 (31.9–54.6) vs 42.9 (28.8–56.9)) and PD (less affected vs more affected limb, 71.1 (59.8–82.5) vs 72.5 (58.5–86.6)), while a significant asymmetry was found in MS (54.4 (46.4–62.4) vs 81.1 (71.2–91.1)) and ST (52.1 (42.6–61.7) vs 74.7 (62.8–86.6)) participants. The history of falls was comparable among PD, MS, and ST groups, and the MoS in the frontal plane showed a strong correlation with these records. Objective assessment of MoS revealed pathology-specific strategies showing different impacts in MS, ST, and PD on the ability to control CoM information to manage the balance between limbs during gait. MoS evaluation will provide useful information to address a tailored rehabilitation program and to monitor disease progression.


Motor Control ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 150-167
Author(s):  
Yuko Kuramatsu ◽  
Yuji Yamamoto ◽  
Shin-Ichi Izumi

This study investigated the sensorimotor strategies for dynamic balance control in individuals with stroke by restricting sensory input that might influence task accomplishment. Sit-to-stand movements were performed with restricted vision by participants with hemiparesis and healthy controls. The authors evaluated the variability in the position of participants’ center of mass and velocity, and the center-of-pressure position, in each orthogonal direction at the lift-off point. When vision was restricted, the variability in the mediolateral center-of-pressure position decreased significantly in individuals with hemiparesis, but not in healthy controls. Participants with hemiparesis adopted strategies that explicitly differed from those used by healthy individuals. Variability may be decreased in the direction that most requires accuracy. Individuals with hemiparesis have been reported to have asymmetrical balance deficits, and that meant they had to prioritize mediolateral motion control to prevent falling. This study suggests that individuals with hemiparesis adopt strategies appropriate to their characteristics.


Sign in / Sign up

Export Citation Format

Share Document