scholarly journals SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica)

GigaScience ◽  
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Giulio Formenti ◽  
Matteo Chiara ◽  
Lucy Poveda ◽  
Kees-Jan Francoijs ◽  
Andrea Bonisoli-Alquati ◽  
...  

Abstract Background The barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioral, and genetic studies. To facilitate further population genetics and genomic studies, we present a reference genome assembly for the European subspecies (H. r. rustica). Findings As part of the Genome10K effort on generating high-quality vertebrate genomes (Vertebrate Genomes Project), we have assembled a highly contiguous genome assembly using single molecule real-time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived from both the Nick, Label, Repair, and Stain technology and from the Direct Label and Stain (DLS) technology. As proposed by Bionano, DLS more than doubled the scaffold N50 with respect to the nickase. The dual enzyme hybrid scaffold led to a further marginal increase in scaffold N50 and an overall increase of confidence in the scaffolds. After removal of haplotigs, the final assembly is approximately 1.21 Gbp in size, with a scaffold N50 value of more than 25.95 Mbp. Conclusions This high-quality genome assembly represents a valuable resource for future studies of population genetics and genomics in the barn swallow and for studies concerning the evolution of avian genomes. It also represents one of the very first genomes assembled by combining SMRT long-read sequencing with the new Bionano DLS technology for scaffolding. The quality of this assembly demonstrates the potential of this methodology to substantially increase the contiguity of genome assemblies.

2018 ◽  
Author(s):  
Giulio Formenti ◽  
Matteo Chiara ◽  
Lucy Poveda ◽  
Kees-Jan Francoijs ◽  
Andrea Bonisoli-Alquati ◽  
...  

ABSTRACTBackgroundThe barn swallow (Hirundo rustica) is a migratory bird that has been the focus of a large number of ecological, behavioural and genetic studies. To facilitate further population genetics and genomic studies, here we present a reference genome assembly for the European subspecies (H. r. rustica).FindingsAs part of the Genome10K (G10K) effort on generating high quality vertebrate genomes, we have assembled a highly contiguous genome assembly using Single Molecule Real-Time (SMRT) DNA sequencing and several Bionano optical map technologies. We compared and integrated optical maps derived both from the Nick, Label, Repair and Stain and from the Direct Label and Stain (DLS) technologies. As proposed by Bionano, the DLS more than doubled the scaffold N50 with respect to the nickase. The dual enzyme hybrid scaffold led to a further marginal increase in scaffold N50 and an overall increase of confidence in the scaffolds. After removal of haplotigs, the final assembly is approximately 1.21 Gbp in size, with a scaffold N50 value of over 25.95 Mbp.ConclusionsThis high-quality genome assembly represents a valuable resource for further studies of population genetics and genomics in the barn swallow, and for studies concerning the evolution of avian genomes. It also represents one of the very first genomes assembled by combining SMRT long-read sequencing with the new Bionano DLS technology for scaffolding. The quality of this assembly demonstrates the potential of this methodology to substantially increase the contiguity of genome assemblies.


GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Lu Wang ◽  
Jinwei Wu ◽  
Xiaomei Liu ◽  
Dandan Di ◽  
Yuhong Liang ◽  
...  

Abstract Background The golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered colobine species endemic to China, which has several distinct traits including a unique social structure. Although a genome assembly for R. roxellana is available, it is incomplete and fragmented because it was constructed using short-read sequencing technology. Thus, important information such as genome structural variation and repeat sequences may be absent. Findings To obtain a high-quality chromosomal assembly for R. roxellana qinlingensis, we used 5 methods: Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, BioNano optical maps, 10X Genomics link-reads, and high-throughput chromosome conformation capture. The assembled genome was ∼3.04 Gb, with a contig N50 of 5.72 Mb and a scaffold N50 of 144.56 Mb. This represented a 100-fold improvement over the previously published genome. In the new genome, 22,497 protein-coding genes were predicted, of which 22,053 were functionally annotated. Gene family analysis showed that 993 and 2,745 gene families were expanded and contracted, respectively. The reconstructed phylogeny recovered a close relationship between R. rollexana and Macaca mulatta, and these 2 species diverged ∼13.4 million years ago. Conclusion We constructed a high-quality genome assembly of the Qinling golden snub-nosed monkey; it had superior continuity and accuracy, which might be useful for future genetic studies in this species and as a new standard reference genome for colobine primates. In addition, the updated genome assembly might improve our understanding of this species and could assist conservation efforts.


Author(s):  
Hui Zhang ◽  
Yuexing Wang ◽  
Ce Deng ◽  
Sheng Zhao ◽  
Peng Zhang ◽  
...  

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 488 ◽  
Author(s):  
Shiyong Zhang ◽  
Jia Li ◽  
Qin Qin ◽  
Wei Liu ◽  
Chao Bian ◽  
...  

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ≈6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


2021 ◽  
Author(s):  
Yinqing Yang ◽  
Kang Zhang ◽  
Ya Xiao ◽  
Lingkui Zhang ◽  
Yile Huang ◽  
...  

Rubus corchorifolius (Shanmei or mountain berry, 2n =14) is widely distributed in China, and its fruit has high nutritional and medicinal values. Here, we report a high-quality chromosome-scale genome assembly of Shanmei, with a size of 215.69 Mb and encompassing 26696 genes. Genome comparisons among Rosaceae species show that Shanmei and Fupenzi(Rubus chingii Hu) are most closely related, and then is blackberry (Rubus occidentalis). Further resequencing of 101 samples of Shanmei collected from four regions in provinces of Yunnan, Hunan, Jiangxi and Sichuan in South China reveals that the Hunan population of Shanmei possesses the highest diversity and may represent the relatively more ancestral population. Moreover, the Yunnan population undergoes strong selection based on nucleotide diversity, linkage disequilibrium and the historical effective population size analyses. Furthermore, genes from candidate genomic regions that show strong divergence are significantly enriched in flavonoid biosynthesis and plant hormone signal transduction, indicating the genetic basis of adaptation of Shanmei to the local environments. The high-quality genome sequences and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.


2020 ◽  
Vol 33 (8) ◽  
pp. 1029-1031
Author(s):  
Meilian Chen ◽  
Baohua Wang ◽  
Guodong Lu ◽  
Zhenhui Zhong ◽  
Zonghua Wang

Magnaporthe oryzae causes blast disease on more than 50 species of monocot plants, including important crops such as rice, millet, and most recently wheat. Additionally, it is an important model system for studying host-pathogen interaction. Here, we report a high-quality genome assembly and annotation of a laboratory strain 2539 of M. oryzae, which is a widely used progeny of a rice-infecting isolate and a grass-infecting isolate. The genome sequence of strain 2539 will be useful for studying the evolution, host adaption, and pathogenicity of M. oryzae, which will be beneficial for a better understanding of the mechanisms of host-pathogen interaction.


GigaScience ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiaohui Chen ◽  
Liqiang Zhong ◽  
Chao Bian ◽  
Pao Xu ◽  
Ying Qiu ◽  
...  

GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sarah B Kingan ◽  
Julie Urban ◽  
Christine C Lambert ◽  
Primo Baybayan ◽  
Anna K Childers ◽  
...  

ABSTRACT Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


Sign in / Sign up

Export Citation Format

Share Document