scholarly journals Genome Sequence Resource of Magnaporthe oryzae Laboratory Strain 2539

2020 ◽  
Vol 33 (8) ◽  
pp. 1029-1031
Author(s):  
Meilian Chen ◽  
Baohua Wang ◽  
Guodong Lu ◽  
Zhenhui Zhong ◽  
Zonghua Wang

Magnaporthe oryzae causes blast disease on more than 50 species of monocot plants, including important crops such as rice, millet, and most recently wheat. Additionally, it is an important model system for studying host-pathogen interaction. Here, we report a high-quality genome assembly and annotation of a laboratory strain 2539 of M. oryzae, which is a widely used progeny of a rice-infecting isolate and a grass-infecting isolate. The genome sequence of strain 2539 will be useful for studying the evolution, host adaption, and pathogenicity of M. oryzae, which will be beneficial for a better understanding of the mechanisms of host-pathogen interaction.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lili Lin ◽  
Jiaying Cao ◽  
Anqiang Du ◽  
Qiuli An ◽  
Xiaomin Chen ◽  
...  

The eukaryotic translation initiation factor 3 (eIF3) complex consists of essential and non-essential sub-complexes. Non-essential eIF3 complex subunits, such as eIF3e, eIF3j, eIF3k, and eIF3l, modulate stress tolerance and enhance the lifespan of Neurospora crassa and Caenorhabditis elegans. However, there is limited knowledge of the role of the non-essential eIF3 sub-complex in the pathophysiological development of plant fungal pathogens. Here, we deployed genetic and biochemical techniques to explore the influence of a hypothetical protein containing eIF3k domain in Magnaporthe oryzae Oryzae (MoOeIF3k) on reproduction, hyphae morphogenesis, stress tolerance, and pathogenesis. Also, the targeted disruption of MoOeIF3k suppressed vegetative growth and asexual sporulation in ΔMoOeif3k strains significantly. We demonstrated that MoOeIF3k promotes the initiation and development of the rice blast disease by positively regulating the mobilization and degradation of glycogen, appressorium integrity, host penetration, and colonization during host–pathogen interaction. For the first time, we demonstrated that the eIF3k subunit supports the survival of the blast fungus by suppressing vegetative growth and possibly regulating the conversions and utilization of stored cellular energy reserves under starvation conditions. We also observed that the deletion of MoOeIF3k accelerated ribosomal RNA (rRNA) generation in the ΔMoOeif3k strains with a corresponding increase in total protein output. In summary, this study unravels the pathophysiological significance of eIF3k filamentous fungi. The findings also underscored the need to systematically evaluate the individual subunits of the non-essential eIF3 sub-complex during host–pathogen interaction. Further studies are required to unravel the influence of synergetic coordination between translation and transcriptional regulatory machinery on the pathogenesis of filamentous fungi pathogens.


2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Anthony Wong ◽  
Ana Carolina M. Junqueira ◽  
Ankur Chaturvedi ◽  
Akira Uchida ◽  
Rikky W. Purbojati ◽  
...  

Pseudomonas sp. strain SGAir0191 was isolated from an air sample collected in Singapore, and its genome was sequenced using a combination of long and short reads to generate a high-quality genome assembly. The complete genome is approximately 5.07 Mb with 4,370 protein-coding genes, 19 rRNAs, and 73 tRNAs.


2019 ◽  
Vol 8 (29) ◽  
Author(s):  
Shuta Asai ◽  
Yu Ayukawa ◽  
Pamela Gan ◽  
Sachiko Masuda ◽  
Ken Komatsu ◽  
...  

Fusarium oxysporum f. sp. cubense is the causal agent of banana Fusarium wilt, also known as Panama disease. Here, we present a high-quality genome sequence of F. oxysporum f. sp. cubense strain 160527. The genome assembly is composed of 12 contigs with a total assembly length of 51,139,495 bp (N 50 contig length, 4,884,632 bp).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fei Chen ◽  
Liyao Su ◽  
Shuaiya Hu ◽  
Jia-Yu Xue ◽  
Hui Liu ◽  
...  

AbstractRosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R. rugosa adapts to a wide range of habitat types and harsh environmental conditions such as salinity, alkaline, shade, drought, high humidity, and frigid temperatures. Here, we produced and analyzed a high-quality genome sequence for R. rugosa to understand its ecology, floral characteristics and evolution. PacBio HiFi reads were initially used to construct the draft genome of R. rugosa, and then Hi-C sequencing was applied to assemble the contigs into 7 chromosomes. We obtained a 382.6 Mb genome encoding 39,704 protein-coding genes. The genome of R. rugosa appears to be conserved with no additional whole-genome duplication after the gamma whole-genome triplication (WGT), which occurred ~100 million years ago in the ancestor of core eudicots. Based on a comparative analysis of the high-quality genome assembly of R. rugosa and other high-quality Rosaceae genomes, we found a unique large inverted segment in the Chinese rose R. chinensis and a retroposition in strawberry caused by post-WGT events. We also found that floral development- and stress response signaling-related gene modules were retained after the WGT. Two MADS-box genes involved in floral development and the stress-related transcription factors DREB2A-INTERACTING PROTEIN 2 (DRIP2) and PEPTIDE TRANSPORTER 3 (PTR3) were found to be positively selected in evolution, which may have contributed to the unique ability of this plant to adapt to harsh environments. In summary, the high-quality genome sequence of R. rugosa provides a map for genetic studies and molecular breeding of this plant and enables comparative genomic studies of Rosa in the near future.


Author(s):  
Hui Zhang ◽  
Yuexing Wang ◽  
Ce Deng ◽  
Sheng Zhao ◽  
Peng Zhang ◽  
...  

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 488 ◽  
Author(s):  
Shiyong Zhang ◽  
Jia Li ◽  
Qin Qin ◽  
Wei Liu ◽  
Chao Bian ◽  
...  

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ≈6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


2021 ◽  
Author(s):  
Yinqing Yang ◽  
Kang Zhang ◽  
Ya Xiao ◽  
Lingkui Zhang ◽  
Yile Huang ◽  
...  

Rubus corchorifolius (Shanmei or mountain berry, 2n =14) is widely distributed in China, and its fruit has high nutritional and medicinal values. Here, we report a high-quality chromosome-scale genome assembly of Shanmei, with a size of 215.69 Mb and encompassing 26696 genes. Genome comparisons among Rosaceae species show that Shanmei and Fupenzi(Rubus chingii Hu) are most closely related, and then is blackberry (Rubus occidentalis). Further resequencing of 101 samples of Shanmei collected from four regions in provinces of Yunnan, Hunan, Jiangxi and Sichuan in South China reveals that the Hunan population of Shanmei possesses the highest diversity and may represent the relatively more ancestral population. Moreover, the Yunnan population undergoes strong selection based on nucleotide diversity, linkage disequilibrium and the historical effective population size analyses. Furthermore, genes from candidate genomic regions that show strong divergence are significantly enriched in flavonoid biosynthesis and plant hormone signal transduction, indicating the genetic basis of adaptation of Shanmei to the local environments. The high-quality genome sequences and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Prasad Thomas ◽  
Mostafa Y. Abdel-Glil ◽  
Anne Busch ◽  
Lothar H. Wieler ◽  
Inga Eichhorn ◽  
...  

Clostridium limosum can be found in soil and the intestinal tract of animals. In 2014, C. limosum was isolated from a suspected blackleg outbreak in cattle in Schleswig-Holstein, Germany. We present a complete genome sequence of a C. limosum strain represented by a circular chromosome and three plasmids.


Plant Disease ◽  
2020 ◽  
Author(s):  
Chengming Yu ◽  
Yufei Diao ◽  
Quan Lu ◽  
Jiaping Zhao ◽  
Shengnan Cui ◽  
...  

Botryosphaeria dothidea is a latent and important fungal pathogen on a wide range of woody plants. Fruit ring rot caused by B. dothidea is a major disease in China on apple. This study establishes a high quality, nearly complete and well annotated genome sequence of B. dothidea strain sdau11-99. The findings of this research provide a reference genome resource for further research on the apple fruit ring rot pathogen on apple and other hosts.


Sign in / Sign up

Export Citation Format

Share Document