rubus chingii hu
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 27)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 87 ◽  
pp. 104837
Author(s):  
Yan Huo ◽  
Xin Zhao ◽  
Jie Zhao ◽  
Xuewei Kong ◽  
Liya Li ◽  
...  

2021 ◽  
Author(s):  
Yinqing Yang ◽  
Kang Zhang ◽  
Ya Xiao ◽  
Lingkui Zhang ◽  
Yile Huang ◽  
...  

Rubus corchorifolius (Shanmei or mountain berry, 2n =14) is widely distributed in China, and its fruit has high nutritional and medicinal values. Here, we report a high-quality chromosome-scale genome assembly of Shanmei, with a size of 215.69 Mb and encompassing 26696 genes. Genome comparisons among Rosaceae species show that Shanmei and Fupenzi(Rubus chingii Hu) are most closely related, and then is blackberry (Rubus occidentalis). Further resequencing of 101 samples of Shanmei collected from four regions in provinces of Yunnan, Hunan, Jiangxi and Sichuan in South China reveals that the Hunan population of Shanmei possesses the highest diversity and may represent the relatively more ancestral population. Moreover, the Yunnan population undergoes strong selection based on nucleotide diversity, linkage disequilibrium and the historical effective population size analyses. Furthermore, genes from candidate genomic regions that show strong divergence are significantly enriched in flavonoid biosynthesis and plant hormone signal transduction, indicating the genetic basis of adaptation of Shanmei to the local environments. The high-quality genome sequences and the variome dataset of Shanmei provide valuable resources for breeding applications and for elucidating the genome evolution and ecological adaptation of Rubus species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaobai Li ◽  
Jingyong Jiang ◽  
Zhen Chen ◽  
Aaron Jackson

Rubus chingii HU, is a medicinal and nutritious fruit, which is very rich in flavonoids. However, the biosynthesis of its flavonoids is poorly understood. This study examined flavonoids and the genes/proteins at four fruit ripening phases using LC-MS/MS and qPCR. Six major kinds of anthocyanins, primarily consisted of flavanol-anthocyanins, which differed in form or concentration from other Rubus species. In contrast to other known raspberries species, R. chingii had a decline in flavonoids during fruit ripening, which was due to down-regulation of genes and proteins involved in phenylpropanoid and flavonoid biosynthesis. Unexpectedly, anthocyanin also continuously decreased during fruit maturation. This suggests that anthocyanins are not responsible for the fruit’s reddish coloration. Flavanol-anthocyanins were derived from the proanthocyanidin pathway, which consumed two flavonoid units both produced through the same upstream pathway. Their presence indicates a reduction in the potential biosynthesis of anthocyanin production. Also, the constantly low expression of RchANS gene resulted in low levels of anthocyanin biosynthesis. The lack of RchF3′5′H gene/protein hindered the production of delphinidin glycosides. Flavonoids primarily comprising of quercetin/kaempferol-glycosides were predominately located at fruit epidermal-hair and placentae. The proportion of receptacle/drupelets changes with the maturity of the fruit and may be related to a decrease in the content of flavonoids per unit mass as the fruit matures. The profile and biosynthesis of R. chingii flavonoids are unique to Rubus. The unique flavonol pathways of R. chingii could be used to broaden the genetic diversity of raspberry cultivars and to improve their fruit quality.


2021 ◽  
pp. 110324
Author(s):  
Zhen Chen ◽  
Jingyong Jiang ◽  
Xiaobai Li ◽  
Yiwen Xie ◽  
Zexin Jin ◽  
...  

Author(s):  
Zi-Meng Zhou ◽  
Dong-Mei Yan ◽  
Yi-Kun Wang ◽  
Ting Zhang ◽  
Xue-Rong Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document