scholarly journals Comparison of single-nucleotide variants identified by Illumina and Oxford Nanopore technologies in the context of a potential outbreak of Shiga toxin–producing Escherichia coli

GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
David R Greig ◽  
Claire Jenkins ◽  
Saheer Gharbia ◽  
Timothy J Dallman

Abstract Background We aimed to compare Illumina and Oxford Nanopore Technology sequencing data from the 2 isolates of Shiga toxin–producing Escherichia coli (STEC) O157:H7 to determine whether concordant single-nucleotide variants were identified and whether inference of relatedness was consistent with the 2 technologies. Results For the Illumina workflow, the time from DNA extraction to availability of results was ∼40 hours, whereas with the ONT workflow serotyping and Shiga toxin subtyping variant identification were available within 7 hours. After optimization of the ONT variant filtering, on average 95% of the discrepant positions between the technologies were accounted for by methylated positions found in the described 5-methylcytosine motif sequences, CC(A/T)GG. Of the few discrepant variants (6 and 7 difference for the 2 isolates) identified by the 2 technologies, it is likely that both methodologies contain false calls. Conclusions Despite these discrepancies, Illumina and Oxford Nanopore Technology sequences from the same case were placed on the same phylogenetic location against a dense reference database of STEC O157:H7 genomes sequenced using the Illumina workflow. Robust single-nucleotide polymorphism typing using MinION-based variant calling is possible, and we provide evidence that the 2 technologies can be used interchangeably to type STEC O157:H7 in a public health setting.

2019 ◽  
Author(s):  
David R Greig ◽  
Claire Jenkins ◽  
Saheer Gharbia ◽  
Timothy J Dallman

AbstractBackgroundWe aimed to compare Illumina and Oxford Nanopore Technology (ONT) sequencing data from the two isolates of STEC O157:H7 to determine whether concordant single nucleotide variants were identified and whether inference of relatedness was consistent with the two technologies.ResultsFor the Illumina workflow, the time from DNA extraction to availability of results, was approximately 40 hours in comparison to the ONT workflow where serotyping, Shiga toxin subtyping variant identification were available within seven hours. After optimisation of the ONT variant filtering, on average 95% of the discrepant positions between the technologies were accounted for by methylated positions found in the described 5-Methylcytosine motif sequences, CC(A/T)GG. Of the few discrepant variants (6 and 7 difference for the two isolates) identified by the two technologies, it is likely that both methodologies contain false calls.ConclusionsDespite these discrepancies, Illumina and ONT sequences from the same case were placed on the same phylogenetic location against a dense reference database of STEC O157:H7 genomes sequenced using the Illumina workflow. Robust SNP typing using MinION-based variant calling is possible and we provide evidence that the two technologies can be used interchangeably to type STEC O157:H7 in a public health setting.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marwan A. Hawari ◽  
Celine S. Hong ◽  
Leslie G. Biesecker

Abstract Background Somatic single nucleotide variants have gained increased attention because of their role in cancer development and the widespread use of high-throughput sequencing techniques. The necessity to accurately identify these variants in sequencing data has led to a proliferation of somatic variant calling tools. Additionally, the use of simulated data to assess the performance of these tools has become common practice, as there is no gold standard dataset for benchmarking performance. However, many existing somatic variant simulation tools are limited because they rely on generating entirely synthetic reads derived from a reference genome or because they do not allow for the precise customizability that would enable a more focused understanding of single nucleotide variant calling performance. Results SomatoSim is a tool that lets users simulate somatic single nucleotide variants in sequence alignment map (SAM/BAM) files with full control of the specific variant positions, number of variants, variant allele fractions, depth of coverage, read quality, and base quality, among other parameters. SomatoSim accomplishes this through a three-stage process: variant selection, where candidate positions are selected for simulation, variant simulation, where reads are selected and mutated, and variant evaluation, where SomatoSim summarizes the simulation results. Conclusions SomatoSim is a user-friendly tool that offers a high level of customizability for simulating somatic single nucleotide variants. SomatoSim is available at https://github.com/BieseckerLab/SomatoSim.


2021 ◽  
Author(s):  
Tim H. Heupink ◽  
Lennert Verboven ◽  
Robin M. Warren ◽  
Annelies Van Rie

AbstractImproved understanding of the genomic variants that allow Mycobacterium tuberculosis (Mtb) to acquire drug resistance, or tolerance, and increase its virulence are important factors in controlling the current tuberculosis epidemic. Current approaches to Mtb sequencing however cannot reveal Mtb’s full genomic diversity due to the strict requirements of low contamination levels, high Mtb sequence coverage, and elimination of complex regions.We developed the XBS (compleX Bacterial Samples) bioinformatics pipeline which implements joint calling and machine-learning-based variant filtering tools to specifically improve variant detection in the important Mtb samples that do not meet these criteria, such as those from unbiased sputum samples. Using novel simulated datasets, that permit exact accuracy verification, XBS was compared to the UVP and MTBseq pipelines. Accuracy statistics showed that all three pipelines performed equally well for sequence data that resemble those obtained from high depth coverage and low-level contamination culture isolates. In the complex genomic regions however, XBS accurately identified 9.0% more single nucleotide polymorphisms and 8.1% more single nucleotide insertions and deletions than the WHO-endorsed unified analysis variant pipeline. XBS also had superior accuracy for sequence data that resemble those obtained directly from sputum samples, where depth of coverage is typically very low and contamination levels are high. XBS was the only pipeline not affected by low depth of coverage (5-10×), type of contamination and excessive contamination levels (>50%). Simulation results were confirmed using WGS data from clinical samples, confirming the superior performance of XBS with a higher sensitivity (98.8%) when analysing culture isolates and identification of 13.9% more variable sites in WGS data from sputum samples as compared to MTBseq, without evidence for false positive variants when ribosomal RNA regions were excluded.The XBS pipeline facilitates sequencing of less-than-perfect Mtb samples. These advances will benefit future clinical applications of Mtb sequencing, especially whole genome sequencing directly from clinical specimens, thereby avoiding in vitro biases and making many more samples available for drug resistance and other genomic analyses. The additional genetic resolution and increased sample success rate will improve genome-wide association studies and sequence-based transmission studies.Impact statementMycobacterium tuberculosis (Mtb) DNA is usually extracted from culture isolates to obtain high quantities of non-contaminated DNA but this process can change the make-up of the bacterial population and is time-consuming. Furthermore, current analytic approaches exclude complex genomic regions where DNA sequences are repeated to avoid inference of false positive genetic variants, which may result in the loss of important genetic information.We designed the compleX Bacterial Sample (XBS) variant caller to overcome these limitations. XBS employs joint variant calling and machine-learning-based variant filtering to ensure that high quality variants can be inferred from low coverage and highly contaminated genomic sequence data obtained directly from sputum samples. Simulation and clinical data analyses showed that XBS performs better than other pipelines as it can identify more genetic variants and can handle complex (low depth, highly contaminated) Mtb samples. The XBS pipeline was designed to analyse Mtb samples but can easily be adapted to analyse other complex bacterial samples.Data summarySimulated sequencing data have been deposited in SRA BioProject PRJNA706121. All detailed findings are available in the Supplementary Material. Scripts for running the XBS variant calling core are available on https://github.com/TimHHH/XBS The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files.


2020 ◽  
Vol 36 (9) ◽  
pp. 2725-2730
Author(s):  
Keisuke Shimmura ◽  
Yuki Kato ◽  
Yukio Kawahara

Abstract Motivation Genetic variant calling with high-throughput sequencing data has been recognized as a useful tool for better understanding of disease mechanism and detection of potential off-target sites in genome editing. Since most of the variant calling algorithms rely on initial mapping onto a reference genome and tend to predict many variant candidates, variant calling remains challenging in terms of predicting variants with low false positives. Results Here we present Bivartect, a simple yet versatile variant caller based on direct comparison of short sequence reads between normal and mutated samples. Bivartect can detect not only single nucleotide variants but also insertions/deletions, inversions and their complexes. Bivartect achieves high predictive performance with an elaborate memory-saving mechanism, which allows Bivartect to run on a computer with a single node for analyzing small omics data. Tests with simulated benchmark and real genome-editing data indicate that Bivartect was comparable to state-of-the-art variant callers in positive predictive value for detection of single nucleotide variants, even though it yielded a substantially small number of candidates. These results suggest that Bivartect, a reference-free approach, will contribute to the identification of germline mutations as well as off-target sites introduced during genome editing with high accuracy. Availability and implementation Bivartect is implemented in C++ and available along with in silico simulated data at https://github.com/ykat0/bivartect. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhixing Feng ◽  
Jose C. Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can accurately reconstruct haplotypes in closely related strains of the same species (divergence ≥0.011%) from long-read metagenomic data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Lähnemann ◽  
Johannes Köster ◽  
Ute Fischer ◽  
Arndt Borkhardt ◽  
Alice C. McHardy ◽  
...  

AbstractAccurate single cell mutational profiles can reveal genomic cell-to-cell heterogeneity. However, sequencing libraries suitable for genotyping require whole genome amplification, which introduces allelic bias and copy errors. The resulting data violates assumptions of variant callers developed for bulk sequencing. Thus, only dedicated models accounting for amplification bias and errors can provide accurate calls. We present ProSolo for calling single nucleotide variants from multiple displacement amplified (MDA) single cell DNA sequencing data. ProSolo probabilistically models a single cell jointly with a bulk sequencing sample and integrates all relevant MDA biases in a site-specific and scalable—because computationally efficient—manner. This achieves a higher accuracy in calling and genotyping single nucleotide variants in single cells in comparison to state-of-the-art tools and supports imputation of insufficiently covered genotypes, when downstream tools cannot handle missing data. Moreover, ProSolo implements the first approach to control the false discovery rate reliably and flexibly. ProSolo is implemented in an extendable framework, with code and usage at: https://github.com/prosolo/prosolo


2020 ◽  
Author(s):  
Zhixing Feng ◽  
Jose Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, co-infection of multiple pathogens. Detecting and phasing minor variants, which is to determine whether multiple variants are from the same haplotype, play an instrumental role in deciphering cellular genetic heterogeneity, but are still difficult because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, have provided an unprecedented opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrated that iGDA can accurately reconstruct haplotypes in closely-related strains of the same species (divergence ≥ 0.011%) from long-read metagenomic data. Our approach, therefore, presents a significant advance towards the complete deciphering of cellular genetic heterogeneity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuanyi Zhang ◽  
Mohammed El-Kebir ◽  
Idoia Ochoa

AbstractIntra-tumor heterogeneity renders the identification of somatic single-nucleotide variants (SNVs) a challenging problem. In particular, low-frequency SNVs are hard to distinguish from sequencing artifacts. While the increasing availability of multi-sample tumor DNA sequencing data holds the potential for more accurate variant calling, there is a lack of high-sensitivity multi-sample SNV callers that utilize these data. Here we report Moss, a method to identify low-frequency SNVs that recur in multiple sequencing samples from the same tumor. Moss provides any existing single-sample SNV caller the ability to support multiple samples with little additional time overhead. We demonstrate that Moss improves recall while maintaining high precision in a simulated dataset. On multi-sample hepatocellular carcinoma, acute myeloid leukemia and colorectal cancer datasets, Moss identifies new low-frequency variants that meet manual review criteria and are consistent with the tumor’s mutational signature profile. In addition, Moss detects the presence of variants in more samples of the same tumor than reported by the single-sample caller. Moss’ improved sensitivity in SNV calling will enable more detailed downstream analyses in cancer genomics.


2020 ◽  
Author(s):  
David Lähnemann ◽  
Johannes Köster ◽  
Ute Fischer ◽  
Arndt Borkhardt ◽  
Alice C. McHardy ◽  
...  

ABSTRACTObtaining accurate mutational profiles from single cell DNA is essential for the analysis of genomic cell-to-cell heterogeneity at the finest level of resolution. However, sequencing libraries suitable for genotyping require whole genome amplification, which introduces allelic bias and copy errors. As a result, single cell DNA sequencing data violates the assumptions of variant callers developed for bulk sequencing, which when applied to single cells generate significant numbers of false positives and false negatives. Only dedicated models accounting for amplification bias and errors will be able to provide more accurate calls.We present ProSolo, a probabilistic model for calling single nucleotide variants from multiple displacement amplified single cell DNA sequencing data. It introduces a mechanistically motivated empirical model of amplification bias that improves the quantification of genotyping uncertainty. To account for amplification errors, it jointly models the single cell sample with a bulk sequencing sample from the same cell population—also enabling a biologically relevant imputation of missing genotypes for the single cell. Through these innovations, ProSolo achieves substantially higher performance in calling and genotyping single nucleotide variants in single cells in comparison to all state-of-the-art tools. Moreover, ProSolo implements the first approach to control the false discovery rate reliably and flexibly; not only for single nucleotide variant calls, but also for artefacts of single cell methodology that one may wish to identify, such as allele dropout.ProSolo’s model is implemented into a flexible framework, encouraging extensions. The source code and usage instructions are available at: https://github.com/prosolo/prosolo


2019 ◽  
Author(s):  
Peter Edge ◽  
Vikas Bansal

AbstractShort-read sequencing technologies such as Illumina enable the accurate detection of single nucleotide variants (SNVs) and short insertion/deletion variants in human genomes but are unable to provide information about haplotypes and variants in repetitive regions of the genome. Single-molecule sequencing technologies such as Pacific Biosciences and Oxford Nanopore generate long reads (≥ 10 kb in length) that can potentially address these limitations of short reads. However, the high error rate of SMS reads makes it challenging to detect small-scale variants in diploid genomes. We introduce a variant calling method, Longshot, that leverages the haplotype information present in SMS reads to enable the accurate detection and phasing of single nucleotide variants in diploid genomes. Using whole-genome Pacific Biosciences data for multiple human individuals, we demonstrate that Longshot achieves very high accuracy for SNV detection (precision ≥0.992 and recall ≥0.96) that is significantly better than existing variant calling methods. Longshot can also call SNVs with good accuracy using whole-genome Oxford Nanopore data. Finally, we demonstrate that it enables the discovery of variants in duplicated regions of the genome that cannot be mapped using short reads. Longshot is freely available at https://github.com/pjedge/longshot.


Sign in / Sign up

Export Citation Format

Share Document