scholarly journals Comprehensive and accurate genetic variant identification from contaminated and low coverage Mycobacterium tuberculosis whole genome sequencing data

2021 ◽  
Author(s):  
Tim H. Heupink ◽  
Lennert Verboven ◽  
Robin M. Warren ◽  
Annelies Van Rie

AbstractImproved understanding of the genomic variants that allow Mycobacterium tuberculosis (Mtb) to acquire drug resistance, or tolerance, and increase its virulence are important factors in controlling the current tuberculosis epidemic. Current approaches to Mtb sequencing however cannot reveal Mtb’s full genomic diversity due to the strict requirements of low contamination levels, high Mtb sequence coverage, and elimination of complex regions.We developed the XBS (compleX Bacterial Samples) bioinformatics pipeline which implements joint calling and machine-learning-based variant filtering tools to specifically improve variant detection in the important Mtb samples that do not meet these criteria, such as those from unbiased sputum samples. Using novel simulated datasets, that permit exact accuracy verification, XBS was compared to the UVP and MTBseq pipelines. Accuracy statistics showed that all three pipelines performed equally well for sequence data that resemble those obtained from high depth coverage and low-level contamination culture isolates. In the complex genomic regions however, XBS accurately identified 9.0% more single nucleotide polymorphisms and 8.1% more single nucleotide insertions and deletions than the WHO-endorsed unified analysis variant pipeline. XBS also had superior accuracy for sequence data that resemble those obtained directly from sputum samples, where depth of coverage is typically very low and contamination levels are high. XBS was the only pipeline not affected by low depth of coverage (5-10×), type of contamination and excessive contamination levels (>50%). Simulation results were confirmed using WGS data from clinical samples, confirming the superior performance of XBS with a higher sensitivity (98.8%) when analysing culture isolates and identification of 13.9% more variable sites in WGS data from sputum samples as compared to MTBseq, without evidence for false positive variants when ribosomal RNA regions were excluded.The XBS pipeline facilitates sequencing of less-than-perfect Mtb samples. These advances will benefit future clinical applications of Mtb sequencing, especially whole genome sequencing directly from clinical specimens, thereby avoiding in vitro biases and making many more samples available for drug resistance and other genomic analyses. The additional genetic resolution and increased sample success rate will improve genome-wide association studies and sequence-based transmission studies.Impact statementMycobacterium tuberculosis (Mtb) DNA is usually extracted from culture isolates to obtain high quantities of non-contaminated DNA but this process can change the make-up of the bacterial population and is time-consuming. Furthermore, current analytic approaches exclude complex genomic regions where DNA sequences are repeated to avoid inference of false positive genetic variants, which may result in the loss of important genetic information.We designed the compleX Bacterial Sample (XBS) variant caller to overcome these limitations. XBS employs joint variant calling and machine-learning-based variant filtering to ensure that high quality variants can be inferred from low coverage and highly contaminated genomic sequence data obtained directly from sputum samples. Simulation and clinical data analyses showed that XBS performs better than other pipelines as it can identify more genetic variants and can handle complex (low depth, highly contaminated) Mtb samples. The XBS pipeline was designed to analyse Mtb samples but can easily be adapted to analyse other complex bacterial samples.Data summarySimulated sequencing data have been deposited in SRA BioProject PRJNA706121. All detailed findings are available in the Supplementary Material. Scripts for running the XBS variant calling core are available on https://github.com/TimHHH/XBS The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files.

GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
David R Greig ◽  
Claire Jenkins ◽  
Saheer Gharbia ◽  
Timothy J Dallman

Abstract Background We aimed to compare Illumina and Oxford Nanopore Technology sequencing data from the 2 isolates of Shiga toxin–producing Escherichia coli (STEC) O157:H7 to determine whether concordant single-nucleotide variants were identified and whether inference of relatedness was consistent with the 2 technologies. Results For the Illumina workflow, the time from DNA extraction to availability of results was ∼40 hours, whereas with the ONT workflow serotyping and Shiga toxin subtyping variant identification were available within 7 hours. After optimization of the ONT variant filtering, on average 95% of the discrepant positions between the technologies were accounted for by methylated positions found in the described 5-methylcytosine motif sequences, CC(A/T)GG. Of the few discrepant variants (6 and 7 difference for the 2 isolates) identified by the 2 technologies, it is likely that both methodologies contain false calls. Conclusions Despite these discrepancies, Illumina and Oxford Nanopore Technology sequences from the same case were placed on the same phylogenetic location against a dense reference database of STEC O157:H7 genomes sequenced using the Illumina workflow. Robust single-nucleotide polymorphism typing using MinION-based variant calling is possible, and we provide evidence that the 2 technologies can be used interchangeably to type STEC O157:H7 in a public health setting.


2021 ◽  
Author(s):  
Hana Rozhoñová ◽  
Daniel Danciu ◽  
Stefan Stark ◽  
Gunnar Rätsch ◽  
Andr&eacute Kahles ◽  
...  

Recently developed single-cell DNA sequencing technologies enable whole-genome, amplifi-cation-free sequencing of thousands of cells at the cost of ultra-low coverage of the sequenced data(<0.05x per cell), which mostly limits their usage to the identification of copy number alterations(CNAs) in multi-megabase segments. Aside from CNA-based subclone detection, single-nucleotide vari-ant (SNV)-based subclone detection may contribute to a more comprehensive view on intra-tumorheterogeneity. Due to the low coverage of the data, the identification of SNVs is only possible whensuperimposing the sequenced genomes of hundreds of genetically similar cells. Here we present SingleCell Data Tumor Clusterer (SECEDO, lat. 'to separate'), a new method to cluster tumor cells basedsolely on SNVs, inferred on ultra-low coverage single-cell DNA sequencing data. The core aspects ofthe method are an efficient Bayesian filtering of relevant loci and the exploitation of read overlapsand phasing information. We applied SECEDO to a synthetic dataset simulating 7,250 cells and eighttumor subclones from a single patient, and were able to accurately reconstruct the clonal composition,detecting 92.11% of the somatic SNVs, with the smallest clusters representing only 6.9% of the totalpopulation. When applied to four real single-cell sequencing datasets from a breast cancer patient,SECEDO was able to recover the major clonal composition in each dataset at the original sequencingdepth of 0.03x per cell, an 8-fold improvement relative to the state of the art. Variant calling on theresulting clusters recovered more than twice as many SNVs with double the allelic ratio compared tocalling on all cells together, demonstrating the utility of SECEDO. SECEDO is implemented in C++ and is publicly available at https://github.com/ratschlab/secedo.


2019 ◽  
Author(s):  
David R Greig ◽  
Claire Jenkins ◽  
Saheer Gharbia ◽  
Timothy J Dallman

AbstractBackgroundWe aimed to compare Illumina and Oxford Nanopore Technology (ONT) sequencing data from the two isolates of STEC O157:H7 to determine whether concordant single nucleotide variants were identified and whether inference of relatedness was consistent with the two technologies.ResultsFor the Illumina workflow, the time from DNA extraction to availability of results, was approximately 40 hours in comparison to the ONT workflow where serotyping, Shiga toxin subtyping variant identification were available within seven hours. After optimisation of the ONT variant filtering, on average 95% of the discrepant positions between the technologies were accounted for by methylated positions found in the described 5-Methylcytosine motif sequences, CC(A/T)GG. Of the few discrepant variants (6 and 7 difference for the two isolates) identified by the two technologies, it is likely that both methodologies contain false calls.ConclusionsDespite these discrepancies, Illumina and ONT sequences from the same case were placed on the same phylogenetic location against a dense reference database of STEC O157:H7 genomes sequenced using the Illumina workflow. Robust SNP typing using MinION-based variant calling is possible and we provide evidence that the two technologies can be used interchangeably to type STEC O157:H7 in a public health setting.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gavin W. Wilson ◽  
Mathieu Derouet ◽  
Gail E. Darling ◽  
Jonathan C. Yeung

AbstractIdentifying single nucleotide variants has become common practice for droplet-based single-cell RNA-seq experiments; however, presently, a pipeline does not exist to maximize variant calling accuracy. Furthermore, molecular duplicates generated in these experiments have not been utilized to optimally detect variant co-expression. Herein, we introduce scSNV designed from the ground up to “collapse” molecular duplicates and accurately identify variants and their co-expression. We demonstrate that scSNV is fast, with a reduced false-positive variant call rate, and enables the co-detection of genetic variants and A>G RNA edits across twenty-two samples.


2020 ◽  
Author(s):  
Andrew J. Page ◽  
Nabil-Fareed Alikhan ◽  
Michael Strinden ◽  
Thanh Le Viet ◽  
Timofey Skvortsov

AbstractSpoligotyping of Mycobacterium tuberculosis provides a subspecies classification of this major human pathogen. Spoligotypes can be predicted from short read genome sequencing data; however, no methods exist for long read sequence data such as from Nanopore or PacBio. We present a novel software package Galru, which can rapidly detect the spoligotype of a Mycobacterium tuberculosis sample from as little as a single uncorrected long read. It allows for near real-time spoligotyping from long read data as it is being sequenced, giving rapid sample typing. We compare it to the existing state of the art software and find it performs identically to the results obtained from short read sequencing data. Galru is freely available from https://github.com/quadram-institute-bioscience/galru under the GPLv3 open source licence.


2019 ◽  
Vol 20 (S22) ◽  
Author(s):  
Hang Zhang ◽  
Ke Wang ◽  
Juan Zhou ◽  
Jianhua Chen ◽  
Yizhou Xu ◽  
...  

Abstract Background Variant calling and refinement from whole genome/exome sequencing data is a fundamental task for genomics studies. Due to the limited accuracy of NGS sequencing and variant callers, IGV-based manual review is required for further false positive variant filtering, which costs massive labor and time, and results in high inter- and intra-lab variability. Results To overcome the limitation of manual review, we developed a novel approach for Variant Filter by Automated Scoring based on Tagged-signature (VariFAST), and also provided a pipeline integrating GATK Best Practices with VariFAST, which can be easily used for high quality variants detection from raw data. Using the bam and vcf files, VariFAST calculates a v-score by sum of weighted metrics causing false positive variations, and marks tags in the manner of keeping high consistency with manual review, for each variant. We validated the performance of VariFAST for germline variant filtering using the benchmark sequencing data from GIAB, and also for somatic variant filtering using sequencing data of both malignant carcinoma and benign adenomas as well. VariFAST also includes a predictive model trained by XGBOOST algorithm for germline variants refinement, which reveals better MCC and AUC than the state-of-the-art VQSR, especially outcompete in INDEL variant filtering. Conclusion VariFAST can assist researchers efficiently and conveniently to filter the false positive variants, including both germline and somatic ones, in NGS data analysis. The VariFAST source code and the pipeline integrating with GATK Best Practices are available at https://github.com/bioxsjtu/VariFAST.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i186-i193
Author(s):  
Matthew A Myers ◽  
Simone Zaccaria ◽  
Benjamin J Raphael

Abstract Motivation Recent single-cell DNA sequencing technologies enable whole-genome sequencing of hundreds to thousands of individual cells. However, these technologies have ultra-low sequencing coverage (&lt;0.5× per cell) which has limited their use to the analysis of large copy-number aberrations (CNAs) in individual cells. While CNAs are useful markers in cancer studies, single-nucleotide mutations are equally important, both in cancer studies and in other applications. However, ultra-low coverage sequencing yields single-nucleotide mutation data that are too sparse for current single-cell analysis methods. Results We introduce SBMClone, a method to infer clusters of cells, or clones, that share groups of somatic single-nucleotide mutations. SBMClone uses a stochastic block model to overcome sparsity in ultra-low coverage single-cell sequencing data, and we show that SBMClone accurately infers the true clonal composition on simulated datasets with coverage at low as 0.2×. We applied SBMClone to single-cell whole-genome sequencing data from two breast cancer patients obtained using two different sequencing technologies. On the first patient, sequenced using the 10X Genomics CNV solution with sequencing coverage ≈0.03×, SBMClone recovers the major clonal composition when incorporating a small amount of additional information. On the second patient, where pre- and post-treatment tumor samples were sequenced using DOP-PCR with sequencing coverage ≈0.5×, SBMClone shows that tumor cells are present in the post-treatment sample, contrary to published analysis of this dataset. Availability and implementation SBMClone is available on the GitHub repository https://github.com/raphael-group/SBMClone. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 3 (4) ◽  
pp. 399-409 ◽  
Author(s):  
Brandon Jew ◽  
Jae Hoon Sul

Abstract Next-generation sequencing has allowed genetic studies to collect genome sequencing data from a large number of individuals. However, raw sequencing data are not usually interpretable due to fragmentation of the genome and technical biases; therefore, analysis of these data requires many computational approaches. First, for each sequenced individual, sequencing data are aligned and further processed to account for technical biases. Then, variant calling is performed to obtain information on the positions of genetic variants and their corresponding genotypes. Quality control (QC) is applied to identify individuals and genetic variants with sequencing errors. These procedures are necessary to generate accurate variant calls from sequencing data, and many computational approaches have been developed for these tasks. This review will focus on current widely used approaches for variant calling and QC.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5895 ◽  
Author(s):  
Thomas Andreas Kohl ◽  
Christian Utpatel ◽  
Viola Schleusener ◽  
Maria Rosaria De Filippo ◽  
Patrick Beckert ◽  
...  

Analyzing whole-genome sequencing data of Mycobacterium tuberculosis complex (MTBC) isolates in a standardized workflow enables both comprehensive antibiotic resistance profiling and outbreak surveillance with highest resolution up to the identification of recent transmission chains. Here, we present MTBseq, a bioinformatics pipeline for next-generation genome sequence data analysis of MTBC isolates. Employing a reference mapping based workflow, MTBseq reports detected variant positions annotated with known association to antibiotic resistance and performs a lineage classification based on phylogenetic single nucleotide polymorphisms (SNPs). When comparing multiple datasets, MTBseq provides a joint list of variants and a FASTA alignment of SNP positions for use in phylogenomic analysis, and identifies groups of related isolates. The pipeline is customizable, expandable and can be used on a desktop computer or laptop without any internet connection, ensuring mobile usage and data security. MTBseq and accompanying documentation is available from https://github.com/ngs-fzb/MTBseq_source.


2020 ◽  
Vol 36 (15) ◽  
pp. 4369-4371
Author(s):  
Andrew Whalen ◽  
Gregor Gorjanc ◽  
John M Hickey

Abstract Summary AlphaFamImpute is an imputation package for calling, phasing and imputing genome-wide genotypes in outbred full-sib families from single nucleotide polymorphism (SNP) array and genotype-by-sequencing (GBS) data. GBS data are increasingly being used to genotype individuals, especially when SNP arrays do not exist for a population of interest. Low-coverage GBS produces data with a large number of missing or incorrect naïve genotype calls, which can be improved by identifying shared haplotype segments between full-sib individuals. Here, we present AlphaFamImpute, an algorithm specifically designed to exploit the genetic structure of full-sib families. It performs imputation using a two-step approach. In the first step, it phases and imputes parental genotypes based on the segregation states of their offspring (i.e. which pair of parental haplotypes the offspring inherited). In the second step, it phases and imputes the offspring genotypes by detecting which haplotype segments the offspring inherited from their parents. With a series of simulations, we find that AlphaFamImpute obtains high-accuracy genotypes, even when the parents are not genotyped and individuals are sequenced at &lt;1x coverage. Availability and implementation AlphaFamImpute is available as a Python package from the AlphaGenes website http://www.AlphaGenes.roslin.ed.ac.uk/AlphaFamImpute. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document