missing genotypes
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 21)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kristiina Ausmees ◽  
Federico Sanchez-Quinto ◽  
Mattias Jakobsson ◽  
Carl Nettelblad

With capabilities of sequencing ancient DNA to high coverage often limited by sample quality or cost, imputation of missing genotypes presents a possibility to increase power of inference as well as cost-effectiveness for the analysis of ancient data. However, the high degree of uncertainty often associated with ancient DNA poses several methodological challenges, and performance of imputation methods in this context has not been fully explored. To gain further insights, we performed a systematic evaluation of imputation of ancient data using Beagle 4.0 and reference data from phase 3 of the 1000 Genomes project, investigating the effects of coverage, phased reference and study sample size. Making use of five ancient samples with high-coverage data available, we evaluated imputed data with respect to accuracy, reference bias and genetic affinities as captured by PCA. We obtained genotype concordance levels of over 99% for data with 1x coverage, and similar levels of accuracy and reference bias at levels as low as 0.75x. Our findings suggest that using imputed data can be a realistic option for various population genetic analyses even for data in coverage ranges below 1x. We also show that a large and varied phased reference set as well as the inclusion of low- to moderate-coverage ancient samples can increase imputation performance, particularly for rare alleles. In-depth analysis of imputed data with respect to genetic variants and allele frequencies gave further insight into the nature of errors arising during imputation, and can provide practical guidelines for post-processing and validation prior to downstream analysis.


2021 ◽  
Author(s):  
Jigme Dorji ◽  
Christy Vander Jagt ◽  
Amanda Chamberlain ◽  
Benjamin Cocks ◽  
Iona MacLeod ◽  
...  

Abstract Maternal diversity based on a sub-region of mitochondrial genome or variants were commonly used to understand past demographic events in livestock. Additionally, there is growing evidence of direct association of mitochondrial genetic variants with a range of phenotypes. Therefore, this study used bovine complete mitogenomes from a large sequence database to explore the full spectrum of maternal diversity. Mitogenome diversity was evaluated among 1883 animals representing 156 globally important cattle breeds. Overall, the mitogenomes were diverse: presenting 11 major haplogroups, expanding to 1309 unique haplotypes, with nucleotide diversity 0.011 and haplotype diversity 0.99. A small proportion of African taurine (3.5%) and indicine (1.3%) haplogroups were found among the European taurine breeds and composites. The haplogrouping was largely consistent with the population structure derived from alternate clustering methods (e.g. PCA and hierarchical clustering). Further, we present evidence confirming a new indicine subgroup (I1a, 64 animals) mainly consisting of breeds originating from China and characterised by two private mutations within the I1 haplogroup. The total genetic variation was attributed mainly to within-breed variance (96.9%). The accuracy of the imputation of missing genotypes was high (99.8%) except for the relatively rare heteroplasmic genotypes, suggesting the potential for trait association studies within a breed.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Wenchao Zhang ◽  
Yun Kang ◽  
Xinbin Dai ◽  
Shizhong Xu ◽  
Patrick X Zhao

Abstract Genome-wide association study data analyses often face two significant challenges: (i) high dimensionality of single-nucleotide polymorphism (SNP) genotypes and (ii) imputation of missing values. SNPs are not independent due to physical linkage and natural selection. The correlation of nearby SNPs is known as linkage disequilibrium (LD), which can be used for LD conceptual SNP bin mapping, missing genotype inferencing and SNP dimension reduction. We used a stochastic process to describe the SNP signals and proposed two types of autocorrelations to measure nearby SNPs’ information redundancy. Based on the calculated autocorrelation coefficients, we constructed LD bins. We adopted a k-nearest neighbors algorithm (kNN) to impute the missing genotypes. We proposed several novel methods to find the optimal synthetic marker to represent the SNP bin. We also proposed methods to evaluate the information loss or information conservation between using the original genome-wide markers and using dimension-reduced synthetic markers. Our performance assessments on the real-life SNP data from a rice recombinant inbred line (RIL) population and a rice HapMap project show that the new methods produce satisfactory results. We implemented these functional modules in C/C++ and streamlined them into a web-based pipeline named PIP-SNP (https://bioinfo.noble.org/PIP_SNP/) for processing SNP data.


2021 ◽  
Vol 74 (2) ◽  
pp. 138-144
Author(s):  
Sujit Saha ◽  
Nilesh Nayee ◽  
Heena A Shah ◽  
Swapnil Gajjar ◽  
A Sudhakar ◽  
...  

2020 ◽  
Vol 49 (D1) ◽  
pp. D1480-D1488
Author(s):  
Yingjie Gao ◽  
Zhiquan Yang ◽  
Wenqian Yang ◽  
Yanbo Yang ◽  
Jing Gong ◽  
...  

Abstract Genotype imputation is a process that estimates missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs), boost the power to identify genetic association and promote the combination of genetic studies. However, there has been a lack of high-quality reference panels for most plants, which greatly hinders the application of genotype imputation. Here, we developed Plant-ImputeDB (http://gong_lab.hzau.edu.cn/Plant_imputeDB/), a comprehensive database with reference panels of 12 plant species for online genotype imputation, SNP and block search and free download. By integrating genotype data and whole-genome resequencing data of plants from various studies and databases, the current Plant-ImputeDB provides high-quality reference panels of 12 plant species, including ∼69.9 million SNPs from 34 244 samples. It also provides an easy-to-use online tool with the option of two popular tools specifically designed for genotype imputation. In addition, Plant-ImputeDB accepts submissions of different types of genomic variations, and provides free and open access to all publicly available data in support of related research worldwide. In general, Plant-ImputeDB may serve as an important resource for plant genotype imputation and greatly facilitate the research on plant genetic research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruoyun Hui ◽  
Eugenia D’Atanasio ◽  
Lara M. Cassidy ◽  
Christiana L. Scheib ◽  
Toomas Kivisild

Abstract Although ancient DNA data have become increasingly more important in studies about past populations, it is often not feasible or practical to obtain high coverage genomes from poorly preserved samples. While methods of accurate genotype imputation from > 1 × coverage data have recently become a routine, a large proportion of ancient samples remain unusable for downstream analyses due to their low coverage. Here, we evaluate a two-step pipeline for the imputation of common variants in ancient genomes at 0.05–1 × coverage. We use the genotype likelihood input mode in Beagle and filter for confident genotypes as the input to impute missing genotypes. This procedure, when tested on ancient genomes, outperforms a single-step imputation from genotype likelihoods, suggesting that current genotype callers do not fully account for errors in ancient sequences and additional quality controls can be beneficial. We compared the effect of various genotype likelihood calling methods, post-calling, pre-imputation and post-imputation filters, different reference panels, as well as different imputation tools. In a Neolithic Hungarian genome, we obtain ~ 90% imputation accuracy for heterozygous common variants at coverage 0.05 × and > 97% accuracy at coverage 0.5 ×. We show that imputation can mitigate, though not eliminate reference bias in ultra-low coverage ancient genomes.


2020 ◽  
Author(s):  
Benjamin B. Chu ◽  
Eric M. Sobel ◽  
Rory Wasiolek ◽  
Janet S. Sinsheimer ◽  
Hua Zhou ◽  
...  

1AbstractCurrent methods for genotype imputation and phasing exploit the sheer volume of data in haplotype reference panels and rely on hidden Markov models. Existing programs all have essentially the same imputation accuracy, are computationally intensive, and generally require pre-phasing the typed markers. We propose a novel data-mining method for genotype imputation and phasing that substitutes highly efficient linear algebra routines for hidden Markov model calculations. This strategy, embodied in our Julia program MendelImpute.jl, avoids explicit assumptions about recombination and population structure while delivering similar prediction accuracy, better memory usage, and an order of magnitude or better run-times compared to the fastest competing method. MendelImpute operates on both dosage data and unphased genotype data and simultaneously imputes missing genotypes and phase at both the typed and untyped SNPs. Finally, MendelImpute naturally extends to global and local ancestry estimation and lends itself to new strategies for data compression and hence faster data transport and sharing.


2020 ◽  
Author(s):  
Dmitry I. Ignatov ◽  
Gennady V. Khvorykh ◽  
Andrey V. Khrunin ◽  
Stefan Nikolić ◽  
Makhmud Shaban ◽  
...  

AbstractMissing genotypes can affect the efficacy of machine learning approaches to identify the risk genetic variants of common diseases and traits. The problem occurs when genotypic data are collected from different experiments with different DNA microarrays, each being characterised by its pattern of uncalled (missing) genotypes. This can prevent the machine learning classifier from assigning the classes correctly. To tackle this issue, we used well-developed notions of object-attribute biclusters and formal concepts that correspond to dense subrelations in the binary relation patients × SNPs. The paper contains experimental results on applying a biclustering algorithm to a large real-world dataset collected for studying the genetic bases of ischemic stroke. The algorithm could identify large dense biclusters in the genotypic matrix for further processing, which in return significantly improved the quality of machine learning classifiers. The proposed algorithm was also able to generate biclusters for the whole dataset without size constraints in comparison to the In-Close4 algorithm for generation of formal concepts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nan Wang ◽  
Yibing Yuan ◽  
Hui Wang ◽  
Diansi Yu ◽  
Yubo Liu ◽  
...  

Abstract Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput genotyping method that relies on restriction enzymes to reduce genome complexity. GBS is being widely used for various genetic and breeding applications. In the present study, 2240 individuals from eight maize populations, including two association populations (AM), backcross first generation (BC1), BC1F2, F2, double haploid (DH), intermated B73 × Mo17 (IBM), and a recombinant inbred line (RIL) population, were genotyped using GBS. A total of 955,120 of raw data for SNPs was obtained for each individual, with an average genotyping error of 0.70%. The rate of missing genotypic data for these SNPs was related to the level of multiplex sequencing: ~ 25% missing data for 96-plex and ~ 55% for 384-plex. Imputation can greatly reduce the rate of missing genotypes to 12.65% and 3.72% for AM populations and bi-parental populations, respectively, although it increases total genotyping error. For analysis of genetic diversity and linkage mapping, unimputed data with a low rate of genotyping error is beneficial, whereas, for association mapping, imputed data would result in higher marker density and would improve map resolution. Because imputation does not influence the prediction accuracy, both unimputed and imputed data can be used for genomic prediction. In summary, GBS is a versatile and efficient SNP discovery approach for homozygous materials and can be effectively applied for various purposes in maize genetics and breeding.


Sign in / Sign up

Export Citation Format

Share Document