complex eof
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Chi-Hua Chung ◽  
Benjamin Fong Chao

<p>We examine the secular variations of global geomagnetic field on long temporal scales using the IGRF model given in Gauss coefficients for 1900 - 2020. We apply the Empirical Orthogonal Function (EOF) analysis to the geomagnetic field truncated at degree 6 and downward continue it to the core-mantle boundary (CMB) under the assumption of an insulating mantle. The first three EOF modes show the periods around 120, 75 and 60 years with corresponding spatial structures. These oscillational modes potentially support the manifestation of magnetic, Archimedes and Coriolis (MAC) waves in the stably stratified layer near CMB (Buffett, 2016). We also model and decompose the geomagnetic field to standing and drifting components according to trajectories of the Gauss coefficients similarly to Yukutake (2015). We then use the Complex EOF (CEOF) analysis on the drifting field. The results indicate the presence of the westward drift phenomenon but only weakly given the fact that the westward drift has only completed a fraction of a cycle during this time.</p>



Author(s):  
A K Arnold ◽  
P Nithiarasu ◽  
P F Eng

In the current study, the modified Navier—Stokes equations together with the Poisson—Boltzmann and Laplace equations have been used to numerically model electro-osmotic flow (EOF) in straight microchannels. Flow experiments have been carried out using microchannels etched into silicon wafer surfaces. The numerical results from the present study have been compared against experimental data and an analytical solution. The results indicate that the numerical simulations are an accurate representation of EOF and that this model could be used as a tool in the design and analysis of complex EOF driven systems.



2005 ◽  
Vol 6 (2) ◽  
pp. 194-209 ◽  
Author(s):  
Francina Dominguez ◽  
Praveen Kumar

Abstract This study investigates the principal modes of seasonal moisture flux transport over North America, analyzing their possible dependence on large-scale atmospheric circulation patterns. It uses 23 yr (1979–2001) of 6-hourly data from the NCEP–NCAR reanalysis I project. Complex empirical orthogonal function (complex-EOF) analysis is implemented on the vertically integrated and seasonally averaged moisture flux, to identify the dominant modes. For every season, the characteristic spatial pattern of the two most dominant modes is compared to the geopotential height anomaly field and precipitation anomaly field using correlation analysis. The two dominant winter modes capture the variability in the moisture flux field associated with extreme precipitation events over the western coast of the United States. The first winter mode captures 52% of the variability of the season and is related to the strong ENSO events of 1982/83 and 1997/98 (El Niño) and 1989 (La Niña). The second winter mode captures anomalous high moisture flux over the southwest related to the east Pacific teleconnection pattern. The intense moisture transport associated with high-precipitation events in the central United States (including the 1993 flood) is captured by summer mode 1, while the second mode of the summer season captures the moisture flux variability related to the 1983 and 1988 droughts. The results show that these summer flood and drought events are characterized by very different moisture flux anomalies and are not the positive and negative phases of a given mode. The use of complex-EOF analysis captures extreme hydrologic events as characteristic modes of interannual variability and allows a better understanding of the atmospheric circulation patterns associated with these events.





Sign in / Sign up

Export Citation Format

Share Document