scholarly journals Using multicomponent ambient seismic noise cross-correlations to identify higher mode Rayleigh waves and improve dispersion measurements

2020 ◽  
Vol 222 (3) ◽  
pp. 1590-1605 ◽  
Author(s):  
Avinash Nayak ◽  
Clifford H Thurber

SUMMARY Ambient seismic noise cross-correlation with three-component sensors yields a nine-component empirical Green's tensor, in which four components of the radial–vertical plane contain Rayleigh waves. We exploit the retrograde elliptical nature of particle motion of the fundamental mode Rayleigh wave to correct the phase of the four radial–vertical components and stack them to obtain an average fundamental mode Rayleigh-wave time-series. This technique can suppress incoherent noise and wave packets that do not follow the targeted elliptical particle motion. The same technique can be used to isolate the first higher mode Rayleigh wave that follows prograde elliptical particle motion. We first demonstrate the effectiveness of the method on synthetic waveforms and then apply it on noise cross-correlations computed in Central California. Using this method, we isolate 1st higher mode Rayleigh waves on noise cross-correlations in the Great Valley, California, which provides new phase velocity constraints for estimating velocity structure in the sedimentary basin. We also obtain improved estimates of fundamental mode Rayleigh-wave dispersion for surface-wave tomography. The waveforms stacked assuming retrograde particle motion return at least ∼20 per cent more group velocity dispersion measurements satisfying a minimum signal-to-noise ratio (SNR) criterion than the individual components for periods ∼4–18 s. For equivalent group velocity measurements, SNR for the stacked estimate of the fundamental mode Rayleigh wave is on average 40 per cent greater than that measured on the individual components at periods less than 10 s. The technique also provides an easy way to detect large errors in sensor orientation.

Author(s):  
T Yudistira ◽  
J-P Metaxian ◽  
M Putriastuti ◽  
S Widiyantoro ◽  
N Rawlinson ◽  
...  

Summary Mt. Merapi, which lies just north of the city of Yogyakarta in Java, Indonesia, is one of the most active and dangerous volcanoes in the world. Thanks to its subduction zone setting, Mt Merapi is a stratovolcano, and rises to an elevation of 2968 m above sea level. It stands at the intersection of two volcanic lineaments, Ungaran–Telomoyo–Merbabu–Merapi (UTMM) and Lawu–Merapi–Sumbing–Sindoro–Slamet, which are oriented north-south and west-east, respectively. Although it has been the subject of many geophysical studies, Mt Merapi's underlying magmatic plumbing system is still not well understood. Here, we present the results of an ambient seismic noise tomography study, which comprise of a series of Rayleigh wave group velocity maps and a 3-D shear wave velocity model of the Merapi-Merbabu complex. A total of 10 months of continuous data (October 2013–July 2014) recorded by a network of 46 broadband seismometers were used. We computed and stacked daily cross-correlations from every pair of simultaneously recording stations to obtain the corresponding inter-station empirical Green's functions. Surface wave dispersion information was extracted from the cross-correlations using the multiple filtering technique, which provided us with an estimate of Rayleigh wave group velocity as a function of period. The group velocity maps for periods 3–12 s were then inverted to obtain shear wave velocity structure using the neighbourhood algorithm. From these results, we observe a dominant high velocity anomaly underlying Mt. Merapi and Mt. Merbabu with a strike of 152° N, which we suggest is evidence of old lava dating from the UTMM double-chain volcanic arc which formed Merbabu and Old Merapi. We also identify a low velocity anomaly on the southwest flank of Merapi which we interpret to be an active magmatic intrusion.


2014 ◽  
Vol 41 (22) ◽  
pp. 8045-8052 ◽  
Author(s):  
Michael Witek ◽  
Suzan van der Lee ◽  
Tae-Seob Kang

2021 ◽  
Vol 13 (16) ◽  
pp. 3097
Author(s):  
Patrick M. Meyers ◽  
Tanner Prestegard ◽  
Vuk Mandic ◽  
Victor C. Tsai ◽  
Daniel C. Bowden ◽  
...  

We develop a linear inversion technique for measuring the modal composition and directionality of ambient seismic noise. The technique draws from similar techniques used in astrophysics and gravitational-wave physics, and relies on measuring cross-correlations between different seismometer channels in a seismometer array. We characterize the sensitivity and the angular resolution of this technique using a series of simulations and real-world tests. We then apply the technique to data acquired by the three-dimensional seismometer array at the Homestake mine in Lead, SD, to estimate the composition and directionality of the seismic noise at microseism frequencies. We show that, at times of low-microseism amplitudes, noise is dominated by body waves (P and S), while at high-microseism times, the noise is dominated by surface Rayleigh waves.


1971 ◽  
Vol 61 (4) ◽  
pp. 807-849
Author(s):  
Jack Capon ◽  
Jack F. Evernden

abstract The problem of detecting one Rayleigh wave in the presence of the coda of another larger Rayleigh wave is considered. A detection method is proposed in which a high-resolution, wave number analysis technique is applied to prefiltered data from the Large Aperture Seismic Array (LASA) to determine the direction of arrival of the 40-sec-period Rayleigh-wave group at the appropriate arrival time. The performance of this detection method is considered in great detail. A necessary concomitant of the study of the detection method is the determination of the phases which comprise the coda. It is shown that one component of the coda consists of fundamental-mode Rayleigh waves which propagate along multiple paths and may be caused by either reflections at continental margins or diffraction effects. As has been demonstrated many times, the coda is shown to consist also of fundamental-mode Rayleigh waves which have propagated around the Earth in the direction of the back azimuth. Multiply reflected P and S waves, which propagate primarily in the upper mantle, are detected easily.


Sign in / Sign up

Export Citation Format

Share Document