scholarly journals Combining strong-motion, InSAR and GPS data to refine the fault geometry and source kinematics of the 2011, Mw 6.2, Christchurch earthquake (New Zealand)

2013 ◽  
Vol 194 (3) ◽  
pp. 1760-1777 ◽  
Author(s):  
Eugenio Maria Toraldo Serra ◽  
Bertrand Delouis ◽  
Antonio Emolo ◽  
Aldo Zollo
1981 ◽  
Vol 71 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Allan G. Lindh ◽  
David M. Boore

abstract A reanalysis of the available data for the 1966 Parkfield, California, earthquake (ML=512) suggests that although the ground breakage and aftershocks extended about 40 km along the San Andreas Fault, the initial dynamic rupture was only 20 to 25 km in length. The foreshocks and the point of initiation of the main event locate at a small bend in the mapped trace of the fault. Detailed analysis of the P-wave first motions from these events at the Gold Hill station, 20 km southeast, indicates that the bend in the fault extends to depth and apparently represents a physical discontinuity on the fault plane. Other evidence suggests that this discontinuity plays an important part in the recurrence of similar magnitude 5 to 6 earthquakes at Parkfield. Analysis of the strong-motion records suggests that the rupture stopped at another discontinuity in the fault plane, an en-echelon offset near Gold Hill that lies at the boundary on the San Andreas Fault between the zone of aseismic slip and the locked zone on which the great 1857 earthquake occurred. Foreshocks to the 1857 earthquake occurred in this area (Sieh, 1978), and the epicenter of the main shock may have coincided with the offset zone. If it did, a detailed study of the geological and geophysical character of the region might be rewarding in terms of understanding how and why great earthquakes initiate where they do.


Author(s):  
D. J. Dowrick ◽  
S. Sritharan

The attenuation of peak ground accelerations was studied for eight New Zealand earthquakes which occurred in the period 1987 to 1991. These events were of medium size with moment magnitudes in the range Mw = 5.8 - 6.7, with depth to centroids of the fault rupture ranging from 4 to 60 km. Attenuation of peak ground accelerations was examined for each event, based on the slope distance from the rupture surface to each strong motion data site. The mean regression attenuation curve for each event was compared with those derived by others using data sets from other parts of the world, allowance being made for source mechanism and depth. Excepting the 1988 Te Anau event, the other seven New Zealand events as a set closely match a Japanese model, but give significantly stronger accelerations than those predicted by the models from western USA and Europe.


Author(s):  
Jian Zhang ◽  
Dick Beetham ◽  
Grant Dellow ◽  
John X. Zhao ◽  
Graeme H. McVerry

A New empirical model has been developed for predicting liquefaction-induced lateral spreading displacement and is a function of response spectral displacements and geotechnical parameters. Different from the earlier model of Zhang and Zhao (2005), the application of which was limited to Japan and California, the new model can potentially be applied anywhere if ground shaking can be estimated (by using local strong-motion attenuation relations). The new model is applied in New Zealand where the response spectral displacement is estimated using New Zealand strong-motion attenuation relations (McVerry et al. 2006). The accuracy of the new model is evaluated by comparing predicted lateral displacements with those which have been measured from aerial photos or the width of ground cracks at the Landing Road bridge, the James Street loop, the Whakatane Pony Club and the Edgecumbe road and rail bridges sites after the 1987 Edgecumbe earthquake. Results show that most predicted errors (defined as the ratio of the difference between the measured and predicted lateral displacements to the measured one) from the new model are less than 40%. When compared with earlier models (Youd et al. 2002, Zhang and Zhao 2005), the new model provides the lowest mean errors.


2020 ◽  
Vol 8 (2) ◽  
pp. 351-366
Author(s):  
Catherine Reid ◽  
John Begg ◽  
Vasiliki Mouslopoulou ◽  
Onno Oncken ◽  
Andrew Nicol ◽  
...  

Abstract. The 2016 Mw=7.8 Kaikōura earthquake (South Island, New Zealand) caused widespread complex ground deformation, including significant coastal uplift of rocky shorelines. This coastal deformation is used here to develop a new methodology, in which the upper living limits of intertidal marine biota have been calibrated against tide-gauge records to quantitatively constrain pre-deformation biota living position relative to sea level. This living position is then applied to measure coseismic uplift at three other locations along the Kaikōura coast. We then assess how coseismic uplift derived using this calibrated biological method compares to that measured using other methods, such as light detection and ranging (lidar) and strong-motion data, as well as non-calibrated biological methods at the same localities. The results show that where biological data are collected by a real-time kinematic (RTK) global navigation satellite system (GNSS) in sheltered locations, this new tide-gauge calibration method estimates tectonic uplift with an accuracy of ±≤0.07 m in the vicinity of the tide gauge and an overall mean accuracy of ±0.10 m or 10 % compared to differential lidar methods for all locations. Sites exposed to high wave wash, or data collected by tape measure, are more likely to show higher uplift results. Tectonic uplift estimates derived using predictive tidal charts produce overall higher uplift estimates in comparison to tide-gauge-calibrated and instrumental methods, with mean uplift results 0.21 m or 20 % higher than lidar results. This low-tech methodology can, however, produce uplift results that are broadly consistent with instrumental methodologies and may be applied with confidence in remote locations where lidar or local tide-gauge measurements are not available.


Author(s):  
Steven A. Christensen

On August 10 1993, at 09h 46m UT an earthquake of magnitude (ML) 6.4 occurred near Ormond, a locality to the north west of Gisbome in the North Island of New Zealand. The epicentre of the event was 38.52°S, 177.93°E, and had a focal depth of 48 km (Seismological Observatory, Institute of Geological and Nuclear Sciences Ltd.). Strong motion accelerographs at two sites on sediment in Gisborne recorded peak ground accelerations of 0.22 g at a distance of 20 km from the epicentre, while at Wairoa (80 km to the SW of the epicentre) 0.05 g was recorded, at Tolaga Bay (30 km to the NE of the epicentre) 0.09 g was measured [Pers. Comn. J. Zhou], and strong motion lasted for 5-10 s. Intensity of MMVI was observed in the Ormond area with pockets of MMVII, the later being based in particular on the presence of liquefaction.


Author(s):  
G. H. McVerry

Probabilistic techniques for seismic hazard analysis have
come into vogue in New Zealand for both the assessment of major projects and the development and review of seismic design codes. However, there are considerable uncertainties in the modelling
 of the strong-motion attenuation, which is necessarily based largely on overseas data. An excellent agreement is obtained between an average 5% damped response spectrum for New Zealand alluvial sites in the 20 to 59 km distance range and 5.4 to 6.0 magnitude class and that given by a Japanese model. Unfortunately, this corresponds to only about half the amplitude levels of 150 year spectra relevant to code design. The much more rapid decay
of ground shaking with distance in New Zealand has led to a considerable modification based on maximum ground acceleration
data from the Inangahua earthquake of the distance-dependence
of the Japanese response spectra model. Less scatter in New Zealand data has resulted in adopting a lower standard deviation for the attenuation model, which is important in reducing the considerable "probabilistic enhancement" of the hazard estimates. Regional differences in attenuation shown by intensities are difficult to resolve from the strong-motion acceleration data, apart from lower accelerations in Fiordland.


Author(s):  
Martin Reyners ◽  
Peter McGinty ◽  
Simon Cox ◽  
Ian Turnbull ◽  
Tim O'Neill ◽  
...  

The Mw 7.2 Fiordland earthquake of August 21 2003 was the largest shallow earthquake to occur in New Zealand for 35 years. Because of its location in an unpopulated area, it caused only minor damage to buildings, roads and infrastructure. It triggered numerous landslides on steep slopes in the epicentral region, where intensities reached MM9. Deployments of portable seismographs, strong motion recorders and GPS receivers in the epicentral region immediately after the event have established that the earthquake involved thrusting at the shallow part of the subduction interface between the Australian and Pacific plates. Recently installed strong motion recorders of the GeoNet network have ensured that the earthquake is New Zealand's best recorded subduction interface event. Microzonation effects are clear in some of the records. Current peak ground acceleration attenuation relationships for New Zealand subduction interface earthquakes underprediet the ground motions recorded during the earthquake, as was the case for previous large events in Fiordland in 1993 and 1989. The four portable strong motion recorders installed in the epicentral region have provided excellent near-field data on the larger aftershocks, with recorded peak ground accelerations ranging up to 0.28g from a nearby ML 6.1 event.


2019 ◽  
Vol 124 (7) ◽  
pp. 7341-7353 ◽  
Author(s):  
Yong Huang ◽  
Xuejun Qiao ◽  
Jeffrey T. Freymueller ◽  
Qi Wang ◽  
Shaomin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document