scholarly journals Development of an inversion method to extract information on fault geometry from teleseismic data

2019 ◽  
Vol 220 (2) ◽  
pp. 1055-1065 ◽  
Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata

SUMMARY Teleseismic waveforms contain information on fault slip evolution during an earthquake, as well as on the fault geometry. A linear finite-fault inversion method is a tool for solving the slip-rate function distribution under an assumption of fault geometry as a single or multiple-fault-plane model. An inappropriate assumption of fault geometry would tend to distort the solution due to Green’s function modelling errors. We developed a new inversion method to extract information on fault geometry along with the slip-rate function from observed teleseismic waveforms. In this method, as in most previous studies, we assumed a flat fault plane, but we allowed arbitrary directions of slip not necessarily parallel to the assumed fault plane. More precisely, the method represents fault slip on the assumed fault by the superposition of five basis components of potency-density tensor, which can express arbitrary fault slip that occurs underground. We tested the developed method by applying it to real teleseismic P waveforms of the MW 7.7 2013 Balochistan, Pakistan, earthquake, which is thought to have occurred along a curved fault system. The obtained spatiotemporal distribution of potency-density tensors showed that the focal mechanism at each source knot was dominated by a strike-slip component with successive strike angle rotation from 205° to 240° as the rupture propagated unilaterally towards the south-west from the epicentre. This result is consistent with Earth’s surface deformation observed in optical satellite images. The success of the developed method is attributable to the fact that teleseismic body waves are not very sensitive to the spatial location of fault slip, whereas they are very sensitive to the direction of fault slip. The method may be a powerful tool to extract information on fault geometry along with the slip-rate function without requiring detailed assumptions about fault geometry.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinji Yamashita ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Kousuke Shimizu ◽  
Ryoichiro Agata ◽  
...  

AbstractWe developed a flexible finite-fault inversion method for teleseismic P waveforms to obtain a detailed rupture process of a complex multiple-fault earthquake. We estimate the distribution of potency-rate density tensors on an assumed model plane to clarify rupture evolution processes, including variations of fault geometry. We applied our method to the 23 January 2018 Gulf of Alaska earthquake by representing slip on a projected horizontal model plane at a depth of 33.6 km to fit the distribution of aftershocks occurring within one week of the mainshock. The obtained source model, which successfully explained the complex teleseismic P waveforms, shows that the 2018 earthquake ruptured a conjugate system of N-S and E-W faults. The spatiotemporal rupture evolution indicates irregular rupture behavior involving a multiple-shock sequence, which is likely associated with discontinuities in the fault geometry that originated from E-W sea-floor fracture zones and N-S plate-bending faults.


2020 ◽  
Vol 224 (2) ◽  
pp. 1003-1014
Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata

SUMMARY Conventional seismic source inversion estimates the earthquake rupture process on an assumed fault plane that is determined a priori. It has been a difficult challenge to obtain the fault geometry together with the rupture process by seismic source inversion because of the nonlinearity of the inversion technique. In this study, we propose an inversion method to estimate the fault geometry and the rupture process of an earthquake from teleseismic P waveform data, through an elaboration of our previously published finite-fault inversion analysis (Shimizu et al. 2020). That method differs from conventional methods by representing slip on a fault plane with five basis double-couple components, expressed by potency density tensors, instead of two double-couple components compatible with the fault direction. Because the slip direction obtained from the potency density tensors should be compatible with the fault direction, we can obtain the fault geometry consistent with the rupture process. In practice we rely on an iterative process, first assuming a flat fault plane and then updating the fault geometry by using the information included in the obtained potency density tensors. In constructing a non-planar model-fault surface, we assume for simplicity that the fault direction changes only in either the strike or the dip direction. After checking the validity of the proposed method through synthetic tests, we applied it to the MW 7.7 2013 Balochistan, Pakistan, and MW 7.9 2015 Gorkha, Nepal, earthquakes, which occurred along geometrically complex fault systems. The modelled fault for the Balochistan earthquake is a curved strike-slip fault convex to the south-east, which is consistent with the observed surface ruptures. The modelled fault for the Gorkha earthquake is a reverse fault with a ramp-flat-ramp structure, which is also consistent with the fault geometry derived from geodetic and geological data. These results exhibit that the proposed method works well for constraining fault geometry of an earthquake.


2021 ◽  
Author(s):  
Tira Tadapansawut ◽  
Yagi Yuji ◽  
Ryo Okuwaki ◽  
Shinji Yamashita ◽  
Kousuke Shimizu

The earthquake with a moment magnitude 6.2 that occurred in northern Thailand on 5 May 2014 is the largest recorded in Thailand by modern seismographs; the source is located in the multi-segmented complex fault system of the Phayao fault zone in the northern Thai province of Chiang Rai. This geological setting is appropriate environment for investigating a compound rupture process associated with a geometrically complex fault system in a magnitude-6-class earthquake. To understand in detail the rupture process of the 2014 Thailand earthquake, we elaborate the flexible finite-fault inversion method, used it to invert the globally-observed teleseismic P waveforms, and resolved for the spatiotemporal distribution of both the slip and the fault geometry. The complex rupture process consists of two distinct coseismic slip episodes that evolved along two discontinuous fault planes; these planes coincide with the lineations of the aftershock distribution. The first episode originated at the hypocenter and the rupture propagated south along the north-northeast to south-southwest fault plane. The second episode was triggered at around 5 km north from the epicenter and the rupture propagated along the east-northeast to west-southwest fault plane and terminated at the west end of the source area at 4.5 s hypocentral time. The fault system derived from our finite-fault model suggests geometric complexities including bends. The derived spatiotemporal orientation of the principal stress axis shows different lineations within the two rupture areas and heterogeneity at their edges. This geological setting may have caused the perturbation of the rupture propagation and the triggering of the distinct rupture episodes. Our source model of the 2014 Thailand earthquake suggests that even in the case of small-scale earthquakes, the rupture evolution can be complex when the underlying fault geometry is multiplex.


2015 ◽  
Vol 172 (10) ◽  
pp. 2495-2516
Author(s):  
Bijan Shoorcheh ◽  
Mahdi Motagh ◽  
Marzieh Baes ◽  
Abbas Bahroudi

1996 ◽  
Vol 39 (3) ◽  
Author(s):  
R. Caputo

The Nea Anchialos Fault System has been studied integrating geological, morphological, structural, archaeological and seismic data. This fault system forms the northern boundary of the Almyros Basin which is one of the Neogene-Quaternary tectonic basins of Thessaly. Specific structural and geomorphological mapping were carried out and fault-slip data analysis allowed the Late Quaternary palaeo-stress field to be estimated. The resulting N-S trending purely extensional regime is consistent with the direction of the T-axes computed from the focal mechanisms of the summer 1980, Volos seismic sequence and the April 30, 1985 Almyros earthquake. A minor set of structural data indicates a WNW-ESE extension which has been interpreted as due to a local and second order stress field occurring during the N-S regional extension. Furthermore, new archaeological data, discovered by the author, have improved morphology and tectonics of the area also allowing a tentative estimate of the historic (III-IV century AD. to Present) fault slip rate. Several topographic profiles across the major E- W topographic escarpment as well as along the streams, have emphasised scarps and knick-points, further supporting the occurrence of very recent morphogenic activity. In the last section, the structural, morphological and archaeological data are compared with the already existing seismological data and their integrated analysis indicates that the Nea Anchialos Fault System has been active since Lower(?)-Middle Pleistocene.


2021 ◽  
Author(s):  
Lea Pousse-Beltran ◽  
Lucilla Benedetti ◽  
Jules Fleury ◽  
Paolo Boncio ◽  
Valery Guillou ◽  
...  

<p>In the Central Apennines (Italy), up to now, no absolute dating directly based on the moraines has been carried out to constrain glacial oscillation. However, climatic constrains are often used in the Central Apennine to estimate long term (> 10 ka) fault slip rate. In addition slip rate assessments based on offset morphotectonic markers on the main branches of fault systems and encompassing several seismic cycles (> 10 ka) are sparse. This is particularly true for the Monte Vettore-Monte Bove fault system which triggered the 2016-2017 seismic sequence. We thus provide new assessment for the vertical slip rates along the Mt Vettore-Mt Bove fault system.  Offset measurements were made using a 5-cm resolution DEM obtained through a drone survey and constrain a fault scarp height of 15.5 ± 1.4 m and a cumulative offset of 32-40.5 m. Samples were collected from the Valle Lunga terminal moraine at 1710 m asl and yield <sup>36</sup>Cl exposure ages of 12.7 + 2.2/-1.9 ka while the flat, abraded surface located on top of the tectonic scarp yield <sup>36</sup>Cl exposure ages of 23.4 + 5.3/-4.3 ka. Assuming the offset started to accumulate when climate conditions allow its preservation, thus once the surface was abandoned, we constrain a vertical slip rate of 1.2 ± 0.2 mm/yr along the master branch of the Mt Vettore normal fault.  This rate is higher than the ones previously obtained from trenches along secondary splays of the Mt Vettore-Mt Bove and on the Norcia fault systems. Besides, the yielded chronology for the last glacial maximum in that area at ~23 ka is in good agreement with the timing previously proposed for the LGM in the Apennines.</p>


2020 ◽  
Author(s):  
Nicolas Castro-Perdomo ◽  
Renier Viltres ◽  
Frédéric Masson ◽  
Patrice Ulrich ◽  
Jean-Daniel Bernard ◽  
...  

<p>The Dead Sea Transform fault forms the boundary between the Arabian plate and the Sinai-Levant subplate. Several aspects of this fault system have been extensively studied during the last century. However, the present-day kinematics and deformation along its southern end in the Gulf of Aqaba remain poorly understood. Here we present a crustal motion velocity field based on three GPS surveys conducted between 2015 and 2019 at 30 campaign sites, complemented by 12 permanent stations operating near the gulf. We constrained a pole of rotation for the Sinai-Levant subplate based on five selected stations on the Sinai Peninsula. This Euler pole predicts a left-lateral slip rate of ~4.5 mm/yr on the fault system in the gulf, consistent with earlier findings. We find that standard models of interseismic deformation, such as back-slip and screw dislocation models do not provide a reasonable constraint on fault locking depths due to limited near-fault measurements. Despite this, our results reveal a small (~1 mm/yr) but systematic left-lateral residual motion across the gulf that cannot be resolved by elastic models of strain accumulation. We further find that the orientation of these residuals agrees with modelled postseismic transient motions caused by the 1995 M<sub>W</sub> 7.2 Nuweiba earthquake in the NE and SW quadrants relative to the gulf trend. Combined, these observations suggest that postseismic deformation caused by the Nuweiba earthquake may still be ongoing. We anticipate our findings to be a starting point for future geodetic studies in the northern Red Sea region where large-scale infrastructure mega-projects, such as the NEOM city and the King Salman bridge across the gulf are being developed. Future studies would benefit from incorporating additional GPS stations on the Sinai side of the gulf, refined finite-fault models, seafloor geodetic measurements and better information about past earthquakes.</p>


2020 ◽  
Author(s):  
Ajay Kumar ◽  
Soumyajit Mukherjee ◽  
Mohamedharoon A. Shaikh ◽  
Seema Singh

<p>The Morni hills located in the north-western Himalaya in Panchkula district, Haryana has undergone poly-phase deformation owing to its complex tectonic history. In order to better understand the kinematic evolution of study area, detailed structural analyses of the fault system at regional-scale is carried out. We perform paleostress analyses on the collected fault-slip data to derive the paleostress tensors. The fault-slip data includes attitudes of fault planes and slickenside lineations, and the sense of slip along the fault plane determined by observing various kinematic indicators. The study area mainly exposes compacted, fine- to medium-grained calcareous sandstones belonging to the lower Siwalik formation in the Himalayan foreland basin. The exposed sandstones contain numerous striated slip planes of varying slip-sense. As the fault planes are intra-formational and exposed in uniform lithology, sense of slip cannot be determined through offset markers. In such cases, the sense of slip of the fault plane is determined solely by observing various slickenside kinematic indicators and fracture types developed on the faulted surface. The slickenside kinematic indicators e.g., calcite mineral steps were found useful in deciphering the sense of movement of each of the slip plane. The paleostress inversion of fault-slip data was carried out by applying the open source software T-Tecto studio X5 to obtain the reduced stress tensor. The Paleostress inversion algorithm called the Right Dihedral Method (RDM) is executed to estimate the principal stress axes orientations. Temporally, the slip planes may have reactivated multiple times preserving multiple slickenside orientations superimposing one another. Such fault-slip data are called heterogeneous and therefore, multiple stress states are deduced to explain the heterogeneous fault-slip data. The paleostress analysis results indicate stress regime index (R’) range 1.25–2.25 and 0.20–1.00 suggesting pure strike-slip to transpressive and pure extensive to transtensive stress regime respectively prevailing in the study area.</p>


Sign in / Sign up

Export Citation Format

Share Document