scholarly journals Development of an inversion method to extract information on fault geometry from teleseismic data

Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata
2019 ◽  
Vol 220 (2) ◽  
pp. 1055-1065 ◽  
Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata

SUMMARY Teleseismic waveforms contain information on fault slip evolution during an earthquake, as well as on the fault geometry. A linear finite-fault inversion method is a tool for solving the slip-rate function distribution under an assumption of fault geometry as a single or multiple-fault-plane model. An inappropriate assumption of fault geometry would tend to distort the solution due to Green’s function modelling errors. We developed a new inversion method to extract information on fault geometry along with the slip-rate function from observed teleseismic waveforms. In this method, as in most previous studies, we assumed a flat fault plane, but we allowed arbitrary directions of slip not necessarily parallel to the assumed fault plane. More precisely, the method represents fault slip on the assumed fault by the superposition of five basis components of potency-density tensor, which can express arbitrary fault slip that occurs underground. We tested the developed method by applying it to real teleseismic P waveforms of the MW 7.7 2013 Balochistan, Pakistan, earthquake, which is thought to have occurred along a curved fault system. The obtained spatiotemporal distribution of potency-density tensors showed that the focal mechanism at each source knot was dominated by a strike-slip component with successive strike angle rotation from 205° to 240° as the rupture propagated unilaterally towards the south-west from the epicentre. This result is consistent with Earth’s surface deformation observed in optical satellite images. The success of the developed method is attributable to the fact that teleseismic body waves are not very sensitive to the spatial location of fault slip, whereas they are very sensitive to the direction of fault slip. The method may be a powerful tool to extract information on fault geometry along with the slip-rate function without requiring detailed assumptions about fault geometry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinji Yamashita ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Kousuke Shimizu ◽  
Ryoichiro Agata ◽  
...  

AbstractWe developed a flexible finite-fault inversion method for teleseismic P waveforms to obtain a detailed rupture process of a complex multiple-fault earthquake. We estimate the distribution of potency-rate density tensors on an assumed model plane to clarify rupture evolution processes, including variations of fault geometry. We applied our method to the 23 January 2018 Gulf of Alaska earthquake by representing slip on a projected horizontal model plane at a depth of 33.6 km to fit the distribution of aftershocks occurring within one week of the mainshock. The obtained source model, which successfully explained the complex teleseismic P waveforms, shows that the 2018 earthquake ruptured a conjugate system of N-S and E-W faults. The spatiotemporal rupture evolution indicates irregular rupture behavior involving a multiple-shock sequence, which is likely associated with discontinuities in the fault geometry that originated from E-W sea-floor fracture zones and N-S plate-bending faults.


2020 ◽  
Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata

2020 ◽  
Vol 224 (2) ◽  
pp. 1003-1014
Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata

SUMMARY Conventional seismic source inversion estimates the earthquake rupture process on an assumed fault plane that is determined a priori. It has been a difficult challenge to obtain the fault geometry together with the rupture process by seismic source inversion because of the nonlinearity of the inversion technique. In this study, we propose an inversion method to estimate the fault geometry and the rupture process of an earthquake from teleseismic P waveform data, through an elaboration of our previously published finite-fault inversion analysis (Shimizu et al. 2020). That method differs from conventional methods by representing slip on a fault plane with five basis double-couple components, expressed by potency density tensors, instead of two double-couple components compatible with the fault direction. Because the slip direction obtained from the potency density tensors should be compatible with the fault direction, we can obtain the fault geometry consistent with the rupture process. In practice we rely on an iterative process, first assuming a flat fault plane and then updating the fault geometry by using the information included in the obtained potency density tensors. In constructing a non-planar model-fault surface, we assume for simplicity that the fault direction changes only in either the strike or the dip direction. After checking the validity of the proposed method through synthetic tests, we applied it to the MW 7.7 2013 Balochistan, Pakistan, and MW 7.9 2015 Gorkha, Nepal, earthquakes, which occurred along geometrically complex fault systems. The modelled fault for the Balochistan earthquake is a curved strike-slip fault convex to the south-east, which is consistent with the observed surface ruptures. The modelled fault for the Gorkha earthquake is a reverse fault with a ramp-flat-ramp structure, which is also consistent with the fault geometry derived from geodetic and geological data. These results exhibit that the proposed method works well for constraining fault geometry of an earthquake.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Author(s):  
H. Kohl

High-Resolution Electron Microscopy is able to determine structures of crystals and interfaces with a spatial resolution of somewhat less than 2 Å. As the image is strongly dependent on instrumental parameters, notably the defocus and the spherical aberration, the interpretation of micrographs necessitates a comparison with calculated images. Whereas one has often been content with a qualitative comparison of theory with experiment in the past, one is currently striving for quantitative procedures to extract information from the images [1,2]. For the calculations one starts by assuming a static potential, thus neglecting inelastic scattering processes.We shall confine the discussion to periodic specimens. All electrons, which have only been elastically scattered, are confined to very few directions, the Bragg spots. In-elastically scattered electrons, however, can be found in any direction. Therefore the influence of inelastic processes on the elastically (= Bragg) scattered electrons can be described as an attenuation [3]. For the calculation of high-resolution images this procedure would be correct only if we had an imaging energy filter capable of removing all phonon-scattered electrons. This is not realizable in practice. We are therefore forced to include the contribution of the phonon-scattered electrons.


1971 ◽  
Vol 36 (3) ◽  
pp. 397-409 ◽  
Author(s):  
Rachel E. Stark

Real-time amplitude contour and spectral displays were used in teaching speech production skills to a profoundly deaf, nonspeaking boy. This child had a visual attention problem, a behavior problem, and a poor academic record. In individual instruction, he was first taught to produce features of speech, for example, friction, nasal, and stop, which are present in vocalizations of 6- to 9-month-old infants, and then to combine these features in syllables and words. He made progress in speech, although sign language and finger spelling were taught at the same time. Speech production skills were retained after instruction was terminated. The results suggest that deaf children are able to extract information about the features of speech from visual displays, and that a developmental sequence should be followed as far as possible in teaching speech production skills to them.


2017 ◽  
Vol 2 (3) ◽  

Melanoma is the most dangerous type of skin cancer in which mostly damaged unpaired DNA starts mutating abnormally and staged an unprecedented proliferation of epithelial skin to form a malignant tumor. In epidemics of skin, pigment-forming melanocytes of basal cells start depleting and form uneven black or brown moles. Melanoma can further spread all over the body parts and could become hard to detect. In USA Melanoma kills an estimated 10,130 people annually. This challenge can be succumbed by using the certain anti-cancer drug. In this study design, cyclophosphamide were used as a model drug. But it has own limitation like mild to moderate use may cause severe cytopenia, hemorrhagic cystitis, neutropenia, alopecia and GI disturbance. This is a promising challenge, which is caused due to the increasing in plasma drug concentration above therapeutic level and due to no rate limiting steps involved in formulation design. In this study, we tried to modify drug release up to threefold and extended the release of drug by preparing and designing niosome based topical gel. In the presence of Dichloromethane, Span60 and cholesterol, the initial niosomes were prepared using vacuum evaporator. The optimum percentage drug entrapment efficacy, zeta potential, particle size was found to be 72.16%, 6.19mV, 1.67µm.Prepared niosomes were further characterized using TEM analyzer. The optimum batch of niosomes was selected and incorporated into topical gel preparation. Cold inversion method and Poloxamer -188 and HPMC as core polymers, were used to prepare cyclophosphamide niosome based topical gel. The formula was designed using Design expert 7.0.0 software and Box-Behnken Design model was selected. Almost all the evaluation parameters were studied and reported. The MTT shows good % cell growth inhibition by prepared niosome based gel against of A375 cell line. The drug release was extended up to 20th hours. Further as per ICH Q1A (R2), guideline 6 month stability studies were performed. The results were satisfactory and indicating a good formulation approach design was achieved for Melanoma treatment.


Sign in / Sign up

Export Citation Format

Share Document