O-linked mucin-type glycosylation regulates the transcriptional programme downstream of EGFR

Glycobiology ◽  
2020 ◽  
Author(s):  
Virginia Tajadura-Ortega ◽  
Gennaro Gambardella ◽  
Alexandra Skinner ◽  
Adnan Halim ◽  
Julie Van Coillie ◽  
...  

Abstract Aberrant mucin type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to early termination of O-glycan chains. Mucin type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signalling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.

2019 ◽  
Author(s):  
Virginia Tajadura-Ortega ◽  
Gennaro Gambardella ◽  
Alexandra Skinner ◽  
Katrine Ter-Borch Gram Schjoldager ◽  
Richard Beatson ◽  
...  

ABSTRACTAberrant mucin type O-linked glycosylation is a common occurrence in cancer. This type of O-linked glycosylation is not limited to mucins but can occur on many cell surface glycoproteins where only a small number of sites may be present. Upon EGF ligation, EGFR induces a signaling cascade but can also translocate to the nucleus where it can directly regulate gene transcription. Here we show that upon EGF binding, human breast cancer cells carrying different O-linked glycans respond by transcribing different gene expression signatures. This is not a result of changes in signal transduction but due to the differential nuclear translocation of EGFR in the two glyco-phenotypes. This is regulated by the formation of an EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core-1-based O-glycans characteristic of tumour cells but absent in core-2-carrying cells.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


2021 ◽  
Vol 14 (2) ◽  
pp. 169
Author(s):  
Gloria Ana ◽  
Patrick M. Kelly ◽  
Azizah M. Malebari ◽  
Sara Noorani ◽  
Seema M. Nathwani ◽  
...  

We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2H-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol 24 as a potent antiproliferative compound with an IC50 value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G2/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells. The immunofluorescence staining of MCF-7 cells confirmed that the compounds targeted tubulin and induced multinucleation, which is a recognised sign of mitotic catastrophe. Computational docking studies of compounds 19e, 21l, and 24 in the colchicine binding site of tubulin indicated potential binding conformations for the compounds. Compounds 19e and 21l were also shown to selectively inhibit aromatase. These compounds are promising candidates for development as antiproliferative, aromatase inhibitory, and microtubule-disrupting agents for breast cancer.


2004 ◽  
Vol 200 (3) ◽  
pp. 440-450 ◽  
Author(s):  
Alessandro Weisz ◽  
Walter Basile ◽  
Claudio Scafoglio ◽  
Lucia Altucci ◽  
Francesco Bresciani ◽  
...  

1992 ◽  
Vol 101 (3) ◽  
pp. 625-633
Author(s):  
H. Asaga ◽  
K. Yoshizato

The role of glycochains of cell surface glycoproteins in the cell to collagen interaction was examined by studying the effect of lectins on the fibroblast-mediated collagen gel contraction. Lectins of Phaseolus vulgaris agglutinin (PHA), concanavalin A (ConA), lentil seed agglutinin (LCA), pea agglutinin (PSA), Ricinus communis agglutinin-60 (RCA), and wheat germ agglutinin (WGA) dose-dependently inhibited gel contraction, while lectins of mushroom agglutinin (ABA), peanut agglutinin (PNA), pokeweed mitogen (PWM), and soybean agglutinin (SBA) did not. Of these lectins, PHA seemed to be worthy of further analysis, because PHA, but not other lectins, inhibited spreading of fibroblasts on collagen fibrils but not on plastic or gelatin, suggesting that cell-surface glycoproteins responsive to the lectin are involved in the specific binding of fibroblasts to native collagen fibrils. The inhibitory effect of PHA-E4, an isolectin of PHA, was more intense than that of PHA-L4, another isolectin of PHA. The collagen gel contraction was also inhibited by tunicamycin and monensin in a concentration-dependent and reversible manner. These results strongly suggest that PHA-E4-reactive glycoproteins of the fibroblast surface play an important role in cell to collagen binding during the gel contraction. Five membrane proteins including beta 1 subunits of the integrin family were obtained by affinity chromatography with PHA-E4.


Sign in / Sign up

Export Citation Format

Share Document