scholarly journals The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome

2012 ◽  
Vol 21 (20) ◽  
pp. 4367-4377 ◽  
Author(s):  
Andrea H. Horakova ◽  
Shawn C. Moseley ◽  
Christine R. McLaughlin ◽  
Deanna C. Tremblay ◽  
Brian P. Chadwick
2017 ◽  
Author(s):  
G. Bonora ◽  
X. Deng ◽  
H. Fang ◽  
V. Ramani ◽  
R. Qui ◽  
...  

AbstractThe mammalian inactive X chromosome (Xi) condenses into a bipartite structure with two superdomains of frequent long-range contacts separated by a boundary or hinge region. Using in situ DNase Hi-C in mouse cells with deletions or inversions within the hinge we show that the conserved repeat locus Dxz4 alone is sufficient to maintain the bipartite structure and that Dxz4 orientation controls the distribution of long-range contacts on the Xi. Frequent long-range contacts between Dxz4 and the telomeric superdomain are either lost after its deletion or shifted to the centromeric superdomain after its inversion. This massive reversal in contact distribution is consistent with the reversal of CTCF motif orientation at Dxz4. De-condensation of the Xi after Dxz4 deletion is associated with partial restoration of TADs normally attenuated on the Xi. There is also an increase in chromatin accessibility and CTCF binding on the Xi after Dxz4 deletion or inversion, but few changes in gene expression, in accordance with multiple epigenetic mechanisms ensuring X silencing. We propose that Dxz4 represents a structural platform for frequent long-range contacts with multiple loci in a direction dictated by the orientation of a bank of CTCF motifs at Dxz4, which may work as a ratchet to form the distinctive bipartite structure of the condensed Xi.


2018 ◽  
Author(s):  
Natasha Jansz ◽  
Andrew Keniry ◽  
Marie Trussart ◽  
Heidi Bildsoe ◽  
Tamara Beck ◽  
...  

AbstractThe regulation of higher order chromatin structure is complex and dynamic; however we do not yet understand the full suite of mechanisms governing architecture. Here we reveal the non-canonical SMC protein Smchd1 as a novel regulator of long-range chromatin interactions, and add it to the canon of epigenetic proteins required for Hox gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes dependent on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we find increased short-range interactions and ectopic enhancer activation. By contrast, the inactive X chromosome is transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. There we observe spreading of H3K27me3 domains into regions not normally decorated by this mark. Together these data suggest Smchd1 has the capacity to insulate the chromatin, thereby limiting access to other chromatin modifying proteins.


2018 ◽  
Vol 25 (9) ◽  
pp. 766-777 ◽  
Author(s):  
Natasha Jansz ◽  
Andrew Keniry ◽  
Marie Trussart ◽  
Heidi Bildsoe ◽  
Tamara Beck ◽  
...  

1989 ◽  
Vol 9 (4) ◽  
pp. 1635-1641 ◽  
Author(s):  
S G Grant ◽  
R G Worton

We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.


2021 ◽  
Vol 22 (3) ◽  
pp. 1114
Author(s):  
Ali Youness ◽  
Charles-Henry Miquel ◽  
Jean-Charles Guéry

Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.


2002 ◽  
Vol 157 (7) ◽  
pp. 1113-1123 ◽  
Author(s):  
Brian P. Chadwick ◽  
Huntington F. Willard

One of several features acquired by chromatin of the inactive X chromosome (Xi) is enrichment for the core histone H2A variant macroH2A within a distinct nuclear structure referred to as a macrochromatin body (MCB). In addition to localizing to the MCB, macroH2A accumulates at a perinuclear structure centered at the centrosome. To better understand the association of macroH2A1 with the centrosome and the formation of an MCB, we investigated the distribution of macroH2A1 throughout the somatic cell cycle. Unlike Xi-specific RNA, which associates with the Xi throughout interphase, the appearance of an MCB is predominantly a feature of S phase. Although the MCB dissipates during late S phase and G2 before reforming in late G1, macroH2A1 remains associated during mitosis with specific regions of the Xi, including at the X inactivation center. This association yields a distinct macroH2A banding pattern that overlaps with the site of histone H3 lysine-4 methylation centered at the DXZ4 locus in Xq24. The centrosomal pool of macroH2A1 accumulates in the presence of an inhibitor of the 20S proteasome. Therefore, targeting of macroH2A1 to the centrosome is likely part of a degradation pathway, a mechanism common to a variety of other chromatin proteins.


Sign in / Sign up

Export Citation Format

Share Document