scholarly journals Genome-wide comparison of allele-specific gene expression between African and European populations

2018 ◽  
Vol 27 (6) ◽  
pp. 1067-1077 ◽  
Author(s):  
Lei Tian ◽  
Asifullah Khan ◽  
Zhilin Ning ◽  
Kai Yuan ◽  
Chao Zhang ◽  
...  
Author(s):  
Anran Xuan ◽  
Yuepeng Song ◽  
Chenhao Bu ◽  
Panfei Chen ◽  
Yousry A. El-Kassaby ◽  
...  

The cytokinins play important roles in plant growth and development by regulating gene expression at genome wide level. DNA methylation is responsive to the external environment, but whether DNA methylation changes in response to cytokinin treatment to regulate gene expression is still unclear. Here, we used bisulfite sequencing and RNA sequencing to examine genome-wide DNA methylation and gene expression patterns in poplar (Populus tomentosa) after treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA). We identified 566 significantly differentially methylated regions (DMRs) in response to 6-BA treatment. Transcriptome analysis showed that 501 protein-coding genes, 262 long non-coding RNAs, and 15,793 24-nt small interfering RNAs were differentially expressed under 6-BA treatment. Among these, 79% were differentially expressed between alleles in P. tomentosa. Combined DNA methylation and gene expression analysis demonstrated that DNA methylation plays an important role in regulating allele-specific gene expression. To further investigate the relationship between these 6-BA-responsive genes and phenotypic variation, we performed SNP analysis of 507 6-BA-responsive DMRs via re-sequencing using a natural population of P. tomentosa and identified 206 SNPs that were significantly associated with growth and wood properties. Association analysis indicated that 53% of loci with allele-specific expression had primarily dominant effects on poplar traits. Our comprehensive analyses of P. tomentosa DNA methylation and the regulation of allele-specific gene expression suggest that DNA methylation is an important regulator of imbalanced expression between allelic loci.


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e10947 ◽  
Author(s):  
Joana Carvalho Moreira de Mello ◽  
Érica Sara Souza de Araújo ◽  
Raquel Stabellini ◽  
Ana Maria Fraga ◽  
Jorge Estefano Santana de Souza ◽  
...  

BMC Genetics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Caroline Daelemans ◽  
Matthew E Ritchie ◽  
Guillaume Smits ◽  
Sayeda Abu-Amero ◽  
Ian M Sudbery ◽  
...  

2011 ◽  
Vol 20 (4) ◽  
pp. 725-739 ◽  
Author(s):  
J. TUNG ◽  
M. Y. AKINYI ◽  
S. MUTURA ◽  
J. ALTMANN ◽  
G. A. WRAY ◽  
...  

2019 ◽  
Author(s):  
Igor Mačinković ◽  
Ina Theofel ◽  
Tim Hundertmark ◽  
Kristina Kovač ◽  
Stephan Awe ◽  
...  

Abstract CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.


2007 ◽  
Vol 36 (3) ◽  
pp. 313-331 ◽  
Author(s):  
Pu-Ting Xu ◽  
Yi-Ju Li ◽  
Xue-Jun Qin ◽  
Charles Kroner ◽  
Anya Green-Odlum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document