scholarly journals Distinct CoREST complexes act in a cell-type-specific manner

2019 ◽  
Author(s):  
Igor Mačinković ◽  
Ina Theofel ◽  
Tim Hundertmark ◽  
Kristina Kovač ◽  
Stephan Awe ◽  
...  

Abstract CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. e1008661 ◽  
Author(s):  
Hasthi Ram ◽  
Sudeep Sahadevan ◽  
Nittaya Gale ◽  
Monica Pia Caggiano ◽  
Xiulian Yu ◽  
...  




2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Takashi Ikeda ◽  
Takafusa Hikichi ◽  
Hisashi Miura ◽  
Hirofumi Shibata ◽  
Kanae Mitsunaga ◽  
...  




2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.



2020 ◽  
Vol 87 (9) ◽  
pp. S60-S61
Author(s):  
Jiebiao Wang ◽  
Bernie Devlin ◽  
Kathryn Roeder


2020 ◽  
Vol 48 (6) ◽  
pp. 2880-2896 ◽  
Author(s):  
Jun Li ◽  
Ting Zhang ◽  
Aarthi Ramakrishnan ◽  
Bernd Fritzsch ◽  
Jinshu Xu ◽  
...  

Abstract The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1’s downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.





2008 ◽  
Vol 180 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Nadia Goué ◽  
Marie-Claude Lesage-Descauses ◽  
Ewa J. Mellerowicz ◽  
Elisabeth Magel ◽  
Philippe Label ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document