P–029 Identification of spermatozoa by unsupervised learning from video data

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
V Thambawita ◽  
T B Haugen ◽  
M H Stensen ◽  
O Witczak ◽  
H L Hammer ◽  
...  

Abstract Study question Can artificial intelligence (AI) algorithms identify spermatozoa in a semen sample without using training data annotated by professionals? Summary answer Unsupervised AI methods can discriminate the spermatozoon from other cells and debris. These unsupervised methods may have a potential for several applications in reproductive medicine. What is known already Identification of individual sperm is essential to assess a given sperm sample’s motility behaviour. Existing computer-aided systems need training data based on annotations by professionals, which is resource demanding. On the other hand, data analysed by unsupervised machine learning algorithms can improve supervised algorithms that are more stable for clinical applications. Therefore, unsupervised sperm identification can improve computer-aided sperm analysis systems predicting different aspects of sperm samples. Other possible applications are assessing kinematics and counting of spermatozoa. Study design, size, duration Three sperm-like paint images were manipulated using a graphic design tool and used to train our AI system. Two paintings have an ash colour background and randomly distributed white colour circles, and one painting has a predefined pattern of circles. Selected semen sample videos from a public dataset with videos obtained from 85 participants were used to test our AI system. Participants/materials, setting, methods Generative adversarial networks (GANs) have become common AI methods to process data in an unsupervised way. Based on single image frames extracted from videos, a GAN (SinGAN) can be trained to determine and track locations of sperms by translating the real images into localization paintings. The resulting model showed the potential of identifying the presence of sperms without any prior knowledge about data. Main results and the role of chance Visual comparisons of localization paintings to real sperm images show that inverse training of SinGANs can track sperms. Converting colour frames into grayscale frames and using grayscale synthetic sperm-like frames showed the best visual quality of generated localization paintings of sperm frames. Feeding real sperm video frames to the SinGAN at different scaling factors, which is defining the resolution of the input image, showed different quality levels of generated sperm localization paintings. A sperm frame given to the algorithm with a scaling factor of one leads to random sperm tracking, while the scales two to four result in more accurate localization maps than scaling levels five to eight. In contrast, scales from six to eight result in an output close to the input frame. The proposed method is robust in terms of the number of spermatozoa, meaning that the detection works well for samples with a low or high sperm count. For visual comparisons, visit our Github page: https://vlbthambawita.github.io/singan-sperm/. The sperm tracking speed of our SinGAN using an NVIDIA 1080 graphic processing unit, is around 17 frames per second, which can be improved by using parallel video processing capabilities. This shows the capability of using this method for real-time analysis. Limitations, reasons for caution Unsupervised methods are hard to train, and the results need human verification. The proposed method will need quality control and must be standardized. Unsupervised sperm tracking SinGAN may identify blurry bright spots as non-existing sperm heads which may restrict the use of SinGAN sperm tracking for sperm counting. Wider implications of the findings: Assessment of semen samples according to the WHO guidelines is subjective and resource-demanding. This unsupervised model might be used to develop new systems for less time-consuming and more accurate evaluation of semen samples. It may also be used for real-time analysis of prepared spermatozoa for use in assisted reproduction technology. Trial registration number N/A

Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Andreas Thoma ◽  
Abhijith Moni ◽  
Sridhar Ravi

Digital Image Correlation (DIC) is a powerful tool used to evaluate displacements and deformations in a non-intrusive manner. By comparing two images, one from the undeformed reference states of the sample and the other from the deformed target state, the relative displacement between the two states is determined. DIC is well-known and often used for post-processing analysis of in-plane displacements and deformation of the specimen. Increasing the analysis speed to enable real-time DIC analysis will be beneficial and expand the scope of this method. Here we tested several combinations of the most common DIC methods in combination with different parallelization approaches in MATLAB and evaluated their performance to determine whether the real-time analysis is possible with these methods. The effects of computing with different hardware settings were also analyzed and discussed. We found that implementation problems can reduce the efficiency of a theoretically superior algorithm, such that it becomes practically slower than a sub-optimal algorithm. The Newton–Raphson algorithm in combination with a modified particle swarm algorithm in parallel image computation was found to be most effective. This is contrary to theory, suggesting that the inverse-compositional Gauss–Newton algorithm is superior. As expected, the brute force search algorithm is the least efficient method. We also found that the correct choice of parallelization tasks is critical in attaining improvements in computing speed. A poorly chosen parallelization approach with high parallel overhead leads to inferior performance. Finally, irrespective of the computing mode, the correct choice of combinations of integer-pixel and sub-pixel search algorithms is critical for efficient analysis. The real-time analysis using DIC will be difficult on computers with standard computing capabilities, even if parallelization is implemented, so the suggested solution would be to use graphics processing unit (GPU) acceleration.


2018 ◽  
Vol 7 (3) ◽  
pp. 1208
Author(s):  
Ajai Sunny Joseph ◽  
Elizabeth Isaac

Melanoma is recognized as one of the most dangerous type of skin cancer. A novel method to detect melanoma in real time with the help of Graphical Processing Unit (GPU) is proposed. Existing systems can process medical images and perform a diagnosis based on Image Processing technique and Artificial Intelligence. They are also able to perform video processing with the help of large hardware resources at the backend. This incurs significantly higher costs and space and are complex by both software and hardware. Graphical Processing Units have high processing capabilities compared to a Central Processing Unit of a system. Various approaches were used for implementing real time detection of Melanoma. The results and analysis based on various approaches and the best approach based on our study is discussed in this work. A performance analysis for the approaches on the basis of CPU and GPU environment is also discussed. The proposed system will perform real-time analysis of live medical video data and performs diagnosis. The system when implemented yielded an accuracy of 90.133% which is comparable to existing systems.  


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2020 ◽  
Vol 67 (4) ◽  
pp. 1197-1205 ◽  
Author(s):  
Yuki Totani ◽  
Susumu Kotani ◽  
Kei Odai ◽  
Etsuro Ito ◽  
Manabu Sakakibara

2021 ◽  
Vol 2021 (4) ◽  
pp. 7-16
Author(s):  
Sivaraman Eswaran ◽  
Aruna Srinivasan ◽  
Prasad Honnavalli

2021 ◽  
Vol 57 (28) ◽  
pp. 3430-3444
Author(s):  
Vinod Kumar

This article describes our journey and success stories in the development of chemical warfare detection, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents in realistic environments.


Sign in / Sign up

Export Citation Format

Share Document