IDENTIFICATION OF SELETIVE CLAUDIN CATION CHANNEL BLOCKERS

2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S26
Author(s):  
Jingjing Ma ◽  
Emma Wu ◽  
Ye Li ◽  
William Seibel ◽  
Le Shen ◽  
...  

Abstract Compromised epithelial barrier function is known to be associated with inflammatory bowel disease (IBD) and may contribute to disease development. One mechanism of barrier dysfunction is increased expression of paracellular tight junction ion and water channels formed by claudins. Claudin-2 and -15 are two such channels. We hypothesize that blocking these channels could be a viable therapeutic approach to treat diarrhea. In an effort to develop blockers of these channels, we turn to our previously developed and validated in silico models of claudin-15 (Samanta et al. 2018). We reasoned that compounds that can bind with the interior of claudin pores can limit paracellular water and ion flux. Thus, we used docking algorithms to search for putative small molecules that bind in the claudin-15 pore. AutoDock Vina was initially used to assess rigid docking using small compound databases. The small molecules were analyzed based on binding affinity to the pore and visualized using VMD for their potential blockage of the channel. Clusters of binding modes were identified based on the prominent interacting residues of the protein with the small molecules. We initially screened 10,500 compounds from within the UIC Centre for Drug Discovery and a cross-section of 10,000 compounds from the NCI open compound repository. This initial screen allowed us to identify 2 first-in-class selective claudin-15 blockers with efficacy in MDCK monolayers induced to express claudin-15 and in wildtype duodenum. Next, we screened the entire NCI open compound repository for additional molecules structurally related to our best initially identified molecule and this has allowed us to identify 13 additional molecules that increase TER of claudin-15 expressing MDCK monolayers by 90–160%. Additionally, these molecules possess similar structural components that will be collected in a fragment library and explored through molecular dynamics simulations. We also developed a claudin-2 homology model on which we are performing docking studies and in vitro measurements, which we expect will result in similar candidate ligands for blocking claudin-2. Our study will provide important insight into the role of claudin-dependent cation permeability in fundamental physiology, which we believe will lead to the utility of claudin blockers as a novel and much needed approach to treat diseases such as IBD.

2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S30-S30
Author(s):  
Emma Wu ◽  
Priyanka Samanta ◽  
Ye Li ◽  
Le Shen ◽  
Fatemeh Khalili ◽  
...  

Abstract Compromised epithelial barrier function is known to be associated with inflammatory bowel disease (IBD) and may contribute to disease development. One mechanism of barrier dysfunction is increased expression of paracellular tight junction ion and water channels formed by claudins. Claudin-2 and -15 are two such channels. We hypothesize that blocking these channels could be a viable therapeutic approach to treat diarrhea in IBD. In an effort to develop blockers of these channels, we turn to our previously developed and validated in silico models of claudin-15 (Samanta et al. 2018). We reasoned that molecules that can bind with the interior of claudin pores can limit paracellular water and ion flux. Thus, we used docking algorithms to search for putative drugs that bind in the claudin-15 pore. AutoDock Vina (Scripps Research Institute) was initially used to assess rigid docking using small molecule ligand databases. The ligands were analyzed based on binding affinity to the pore and visualized using VMD (University of Illinois at Urbana-Champaign) for their potential blockage of the channel. Overall, a total of eight candidate ligands from the databases were identified: three from the UICentre database of 10000 ligands, one chemically similar structure identified in another online database (Chemspider), and four which are modifications on the chemical structure generated using ChemDraw. The analysis revealed that the eight ligands were docked in two predominant positions. In the first position, the ligands with more rings docked in an almost linear fashion and interacted with both D55 and D64 pore residues. In the second position of binding, the ligands were more flexible and could hence fold to interact only with D55 residues, thus biding predominantly in the center of the pores. To further evaluate these ligands, we will now turn to 1) flexible claudin-15 docking studies, 2) molecular dynamic simulations and, 3) in vitro measurements using monolayers induced to express claudin -15 and claudin-15 mutants. We also developed a claudin-2 homology model on which we will perform docking studies and in vitro measurements, which we expect will result in similar candidate ligands for blocking claudin-2. Finally, other databases will be analyzed for potential ligand blockers of claudin-2 and -15.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1789 ◽  
Author(s):  
Julia Krzywik ◽  
Witold Mozga ◽  
Maral Aminpour ◽  
Jan Janczak ◽  
Ewa Maj ◽  
...  

Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cuiping Ye ◽  
Chaowen Huang ◽  
Mengchen Zou ◽  
Yahui Hu ◽  
Lishan Luo ◽  
...  

Abstract Background The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. Methods Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. Results HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. Conclusions Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5903
Author(s):  
Prema L. Mallipeddi ◽  
Yongyou Zhang ◽  
Hongyun Li ◽  
Sanford D. Markowitz ◽  
Bruce Posner

We discovered SW033291 in a high throughput chemical screen aimed at identifying 15-prostaglandin dehydrogenase (15-PGDH) modulators. The compound exhibited inhibitory activity in in vitro biochemical and cell-based assays of 15-PGDH activity. We subsequently demonstrated that this compound, and several analogs thereof, are effective in in vivo mouse models of bone marrow transplant, colitis, and liver regeneration, where increased levels of PGE2 positively potentiate tissue regeneration. To better understand the binding of SW033291, we carried out docking studies for both the substrate, PGE2, and an inhibitor, SW033291, to 15-PGDH. Our models suggest similarities in the ways that PGE2 and SW033291 interact with key residues in the 15-PGDH-NAD+ complex. We carried out molecular dynamics simulations (MD) of SW033291 bound to this complex, in order to understand the dynamics of the binding interactions for this compound. The butyl side chain (including the sulfoxide) of SW033291 participates in crucial binding interactions that are similar to those observed for the C15-OH and the C16-C20 alkyl chain of PGE2. In addition, interactions with residues Ser138, Tyr151, and Gln148 play key roles in orienting and stabilizing SW033291 in the binding site and lead to enantioselectivity for the R-enantiomer. Finally, we compare the binding mode of (R)-S(O)-SW033291 with the binding interactions of published 15-PGDH inhibitors.


2021 ◽  
Author(s):  
Tomáš Otava ◽  
Michal Šála ◽  
Fengling Li ◽  
Jindřich Fanfrlík ◽  
Kanchan Devkota ◽  
...  

COVID-19, caused by the SARS-CoV-2 virus, is responsible for a global pandemic that has paralyzed the normal life in many countries around the globe. Therefore, the preparation of both effective vaccines and potential therapeutics has become a major research priority in the biotechnology sector. Both viral proteins and selected host factors are important targets for the treatment of this disease. Suitable targets for antiviral therapy include i.a. viral methyltransferases, which allow the viral mRNA to be efficiently translated and protect the viral RNA from the innate immune system. In this study, we have focused on the structure-based design of the inhibitors of one of the two SARS-CoV-2 methyltransferases, nsp14. This methyltransferase catalyzes the transfer of the methyl group from <i>S</i>-adenosyl-<i>L</i>-methionine (SAM) to cap the guanosine triphosphate moiety of the newly synthesized viral RNA, yielding the methylated capped RNA and <i>S</i>-adenosyl-<i>L</i>-homocysteine (SAH). The crystal structure of SARS-CoV-2 nsp14 is unknown; we have taken advantage of its high homology to SARS-CoV nsp14 and prepared its homology model, which has allowed us to identify novel SAH derivatives modified at the adenine nucleobase as inhibitors of this important viral target. We have synthesized and tested the designed compounds <i>in vitro</i> and shown that these derivatives exert unprecedented inhibitory activity against this crucial enzyme. The docking studies nicely explain the contribution of an aromatic part attached by a linker to the position 7 of the 7-deaza analogues of SAH. Our results will serve as an important source of information for the subsequent development of new antivirals to combat COVID-19.


2020 ◽  
Vol 71 (5) ◽  
pp. 163-181
Author(s):  
Madalina Marina Hrubaru ◽  
Carmellina Daniela Badiceanu ◽  
Anthony Chinonso Ekennia ◽  
Sunday N. Okafor ◽  
Cristian Enache ◽  
...  

Alzheimer�s is a progresive neurodegenerative disease that interferes with human cognitive ability, memory and behavior. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes are major therapeutic routes for the treatment of Alzheimer disease. In the study, nevel bis-polymethylenquinoline-bis-carboxamides (3a-f) and bis-polymethylenquinoline-bis-carboxylic acids (5a-b) having as precursor benzidine, were obtained in good yields by Pfitzinger condensation reactions of bis-isatines with corresponding cyclanones. The compounds were characterized by elemental analysis, FT-IR, NMR and mass spectrometry. Furthermore, the compounds were subjected to molecular docking dynamics simulations to ascertain their potentials as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Molecular docking simulations showed varied binding activities towards the two binding sites of acetylcholinesterase: 4EY7 and 1OCD, and human butyrylcholinesterase: 1P0I. Compounds 3e and 5b demostrated strong binding affinities with 1P0I, 1OCD and 4EY7 biotargets similar to the binding modes of donepezil and tacrine (co-crystallized inhibitors of acetylcholinesterase) and butyrate (co-crystallized inhibitors of butyrylcholinesterase).


2019 ◽  
Vol 317 (3) ◽  
pp. C544-C555 ◽  
Author(s):  
Zonglong Wu ◽  
Yan Li ◽  
Qinggang Liu ◽  
Yaxiao Liu ◽  
Lipeng Chen ◽  
...  

The specific regulatory mechanism of bladder urothelial barrier dysfunction after infection with uropathogenic Escherichia coli (UPEC) is still unclear. The cross talk between bladder urothelial cells and mast cells may play an important role during UPEC infection. In this study, the pyroptosis of urothelial cells was investigated after UPEC infection both in vivo and in vitro. The levels of IL-1β and IL-18 in exosomes derived from bladder urothelial cells after UPEC infection were detected. The role of these processes in the recruitment and activation of mast cells was measured. The mechanism of mast cell-induced disruption of bladder epithelial barrier function was also assessed. We found that UPEC infection induced pyroptosis of bladder urothelial cells and led to the release of IL-1β and IL-18 in the form of exosomes, which promoted the migration of mast cells. Tryptase secreted by mast cells aggravated the damage to the barrier function of the bladder urothelium by acting on protease-activated receptor 2 (PAR2). Inhibition of pyroptosis or the tryptase-PAR2 axis reduced the disruption of bladder urothelial barrier function and decreased the bacterial burden. The present study supports a novel mechanism by which pyroptosis-dependent release of exosomes from bladder urothelial cells activates mast cells and regulates bladder urothelial barrier function during UPEC infection.


Author(s):  
Manisha S. Phoujdar ◽  
Gourishankar R. Aland

Objective: CDK2 inhibitors are implicated in several carcinomas viz. Carcinoma of lung, bladder, sarcomas and retinoblastoma. Pyrazolopyrimidines, being purine bioisosters inhibit more than one type of kinase. In this study, we are studying some novel derivatives of 1H-pyrazolo [3,4d] pyrimidines not reported earlier. The objective of the present study is an attempt towards design and development of 1H-[3,4-] pyrazolo-pyrimidines as CDK2 inhibitors through rational drug design.Methods: The present study has been done on CDK2 structure, PDB ID, 3WBL, co-crystallized with ligand PDY from RCSB protein data bank. A series of seventeen 1H-Pyrazolo [3,4-d] pyrimidines feasible for synthesis was docked on the said CDK2 receptor using Auto Dock 4 version, 1.5.6. Outputs were exported to discovery studio 3.5 client for visual inspection of the binding modes and interactions of the compounds with amino acid residues in the active sites.Results: The results of docking studies revealed that the present series of 1H-Pyrazolo[3,4-d] pyrimidines is showing significant binding through hydrogen bonding, hydrophobic, pi and Van der waals interactions, similar to the ligand PDY. Some conserved H-bond interactions comparable to bioisosters and compounds presently under human trials were noted. Ki values predicted in silico also suggest that the series will show promising CDK2 inhibitory activity.Conclusion: The series designed and docked can be further developed by synthesis and in vitro and in vivo activity. The receptor inhibitory activity can also be checked by specific receptor assays.


2019 ◽  
Vol 18 (07) ◽  
pp. 1950035
Author(s):  
Yongheng Shi ◽  
Fancui Meng ◽  
Jiping Liu ◽  
Bin Wang

The homology model of hSGLT2 (human sodium dependent glucose co-transporter 2) was used as a target for diabetes mellitus. Molecular docking and dynamics simulations were carried out on vitexin- and isovitexin-SGLT2 complexes with dapagliflozin as positive control. The results show that both vitexin and isovitexin have weaker binding energies compared to dapagliflozin, indicating that both ligands may exhibit weak anti-diabetic effects through inhibiting SGLT2. The poor binding mode of vitexin and isovitexin may be responsible for their weak anti-diabetic effect. These results are in accordance with the inhibitory activity against hSGLT2 in vitro test with the inhibitory rate 26.3% of vitexin and 11.2% of isovitexin at the dose of 10[Formula: see text][Formula: see text]mol[Formula: see text][Formula: see text][Formula: see text]L[Formula: see text]. The results of calculation and in vitro test may explain the possible inhibiting mechanism of vitexin and isovitexin against SGLT2, and therefore enhance our understanding of the structure-activity relationships of SGLT2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document