scholarly journals Physiological Community Ecology: Variation in Metabolic Activity of Ecologically Important Rocky Intertidal Invertebrates Along Environmental Gradients

2002 ◽  
Vol 42 (4) ◽  
pp. 862-871 ◽  
Author(s):  
E. P. Dahlhoff
Ecology ◽  
2012 ◽  
Author(s):  
Herman A. Verhoef

At the beginning of the 20th century there was much debate about the “nature” of communities. The driving question was whether the community was a self-organized system of co-occurring species or simply a haphazard collection of populations with minimal functional integration. At that time, two extreme views dominated the discussion: one view considered a community as a superorganism, the member species of which were tightly bound together by interactions that contributed to repeatable patterns of species abundance in space and time. This concept led to the assumption that communities are fundamental entities, to be classified as the Linnaean taxonomy of species. Frederick E. Clements was one of the leading proponents of this approach, and his view became known as the organismic concept of communities. This assumes a common evolutionary history for the integrated species. The opposite view was the individualistic continuum concept, advocated by H. A. Gleason. His focus was on the traits of individual species that allow each to live within specific habitats or geographical ranges. In this view a community is an assemblage of populations of different species whose traits allow persisting in a prescribed area. The spatial boundaries are not sharp, and the species composition can change considerably. Consequently, it was discussed whether ecological communities were sufficiently coherent entities to be considered appropriate study objects. Later, consensus was reached: that properties of communities are of central interest in ecology, regardless of their integrity and coherence. From the 1950s and 1960s onward, the discussion was dominated by the deterministic outcome of local interactions between species and their environments and the building of this into models of communities. This approach, indicated as “traditional community ecology,” led to a morass of theoretical models, without being able to provide general principles about many-species communities. Early-21st-century approaches to bringing general patterns into community ecology concern (1) the metacommunity approach, (2) the functional trait approach, (3) evolutionary community ecology, and (4) the four fundamental processes. The metacommunity approach implicitly recognizes and studies the important role of spatiotemporal dynamics. In the functional trait approach, four themes are focused upon: traits, environmental gradients, the interaction milieu, and performance currencies. This functional, trait-focused approach should have a better prospect of understanding the effects of global changes. Evolutionary community ecology is an approach in which the combination of community ecology and evolutionary biology will lead to a better understanding of the complexity of communities and populations. The four fundamental processes are selection, drift, speciation, and dispersal. This approach concerns an organizational scheme for community ecology, based on these four processes to describe all existing specific models and frameworks, in order to make general statements about process–pattern connections.


2018 ◽  
Vol 29 ◽  
pp. 20-31 ◽  
Author(s):  
Laura K. Williams ◽  
Justine D. Shaw ◽  
Brian M. Sindel ◽  
Susan C. Wilson ◽  
Paul Kristiansen

2007 ◽  
Vol 58 (9) ◽  
pp. 835 ◽  
Author(s):  
Eszter Z. Hidas ◽  
Trudy L. Costa ◽  
David J. Ayre ◽  
Todd E. Minchinton

This paper presents the results of surveys quantifying species richness of rocky intertidal invertebrates across a potential biogeographic barrier on the south-eastern coast of Australia, as well as at Red Bluff, which is an isolated rock platform within the otherwise soft-sediment barrier. It was predicted that the number and composition of invertebrate species would differ on either side of the barrier and at Red Bluff and that these differences would be related to the potential for dispersal of the constituent species. Time-per-area searches at two sites within each of five rock platforms on either side of the barrier and at Red Bluff revealed that species richness and composition differed significantly on either side of the barrier, and that Red Bluff supported many species on both sides of the barrier, indicating its potential as a stepping-stone. The distribution of species was not related to their potential for dispersal, because potentially ‘good’ dispersers with planktonic larvae were sometimes restricted to one side of the barrier and potentially ‘poor’ dispersers with direct developing juveniles were present on both sides of the barrier. These results support increasing evidence that the geographic distribution of intertidal invertebrates cannot be inferred by simple reference to their life histories.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
John H. Graham ◽  
Jeffrey J. Duda

Functional relationships involving species richness may be unimodal, monotonically increasing, monotonically decreasing, bimodal, multimodal, U-shaped, or with no discernable pattern. The unimodal relationships are the most interesting because they suggest dynamic, nonequilibrium community processes. For that reason, they are also contentious. In this paper, we provide a wide-ranging review of the literature on unimodal (humpbacked) species richness-relationships. Though not as widespread as previously thought, unimodal patterns of species richness are often associated with disturbance, predation and herbivory, productivity, spatial heterogeneity, environmental gradients, time, and latitude. These unimodal patterns are contingent on organism and environment; we examine unimodal species richness-curves involving plants, invertebrates, vertebrates, plankton, and microbes in marine, lacustrine, and terrestrial habitats. A goal of future research is to understand the contingent patterns and the complex, interacting processes that generate them.


2015 ◽  
Vol 66 (1) ◽  
pp. 86 ◽  
Author(s):  
Justin A. Lathlean ◽  
David J. Ayre ◽  
Ross A. Coleman ◽  
Todd E. Minchinton

Until recently, marine scientists have relied heavily on satellite sea surface temperatures and terrestrial weather stations as indicators of the way in which the thermal environment, and hence the body temperatures of organisms, vary over spatial and temporal scales. We designed biomimetic temperature loggers for three species of rocky intertidal invertebrates to determine whether mimic body temperatures differ from the external environment and among species and microhabitats. For all three species, microhabitat temperatures were considerably higher than the body temperatures, with differences as great as 11.1°C on horizontal rocky substrata. Across microhabitats, daily maximal temperatures of the limpet Cellana tramoserica were on average 2.1 and 3.1°C higher than body temperatures of the whelk Dicathais orbita and the barnacle Tesseropora rosea respectively. Among-microhabitat variation in each species’ temperature was equally as variable as differences among species within microhabitats. Daily maximal body temperatures of barnacles placed on southerly facing vertical rock surfaces were on average 2.4°C cooler than those on horizontal rock. Likewise, daily maximal body temperatures of whelks were on average 3.1°C cooler within shallow rock pools than on horizontal rock. Our results provide new evidence that unique thermal properties and microhabitat preferences may be important determinants of species’ capacity to cope with climate change.


Sign in / Sign up

Export Citation Format

Share Document