scholarly journals Power of monitoring surveys to detect abundance trends in depleted populations: the effects of density-dependent habitat use, patchiness, and climate change

2007 ◽  
Vol 65 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Julia L. Blanchard ◽  
David L. Maxwell ◽  
Simon Jennings

Abstract Blanchard, J. L., Maxwell, D. L., and Jennings, S. 2008. Power of monitoring surveys to detect abundance trends in depleted fish populations: the effects of density-dependent habitat use, patchiness, and climate change. – ICES Journal of marine Science, 65: 111–120. Traditionally, trawl surveys were designed to collect fishery-independent data for assessing the population dynamics of commercially exploited species. However, trawl survey data are increasingly used to describe the abundance, distribution and ecology of a wide range of species in studies of climate change and fishing effects. These new uses of survey data suggest that improved understanding of the value and limitations of existing survey designs is required. We compared the power of different survey designs (where stations are fixed, fixed stratified, random, or random stratified) to detect known trends in the abundance of depleted populations. Modelled populations were characterized by different temperature preference, density-dependent habitat selection, and patterns of small-scale aggregation (patchiness). Temperature preferences and local patchiness had an influence on the power of different surveys to detect increases in abundance, and in some scenarios, survey-area indices would consistently underestimate or overestimate trends in overall abundance. As the distributions of many fish populations have shifted in response to climate change, exhibit distribution-abundance relationships, and have been depleted by fishing, we conclude that survey indices may provide partial or unreliable information on changes in the true abundance of the wider range of species now of interest. To disentangle the effects of fishing, climate, and biology on the abundance of fish populations, and to monitor the depletion and recovery of species threatened by fishing, there should be greater emphasis on coordinating the timing, areas of coverage, and methods of sampling of surveys of the Northeast Atlantic continental shelf.

2017 ◽  
Vol 68 (12) ◽  
pp. 2366 ◽  
Author(s):  
Paul I. Boon

The distribution and productivity of mangroves is directly affected by a wide range of climatic drivers, including temperature, frost, rainfall, evaporation and storm activity, which, in turn, influence a suite of secondary drivers, including changes in freshwater run-off and sediment supply, groundwater dynamics and inter-species competitiveness. The highest-latitude expression of mangroves globally is at Millers Landing, Victoria (38°45′S), and because the vigour and productivity of mangroves across much of Victoria is thought to be limited by low winter temperatures and the incidence and severity of frosts, it is likely that mangroves will be among the first plant communities to be affected by climate change in coastal south-eastern Australia. An increase in plant vigour is likely, but there are almost no historical data with which to compare current rates of primary production. An extension of mangroves to higher latitudes on the mainland is impossible because of the geomorphology of the land that lies further to the south. Small-scale changes in distribution, including the progressive encroachment of mangroves into coastal saltmarsh, are likely to be among the clearest indications of the response of mangroves to a warming climate. Increased effort into tracking changes in mangrove vigour, productivity and distribution is clearly warranted.


Author(s):  
Patrick R. Cross ◽  
Robert L. Crabtree

Mountain ecosystems are sensitive to climate change, and climate-driven declines in primary producers can impact food webs. Whitebark pine (Pinus albicaulis Engelm.) seed, a valuable food resource for montane wildlife species, is threatened by climate change. Whitebark pine exhibit masting, and during a snowtracking study of Rocky Mountain red foxes (Vulpes vulpes macroura Baird, 1852) in the Greater Yellowstone Ecosystem that happened to coincide with masting, we unexpectedly observed red foxes consuming whitebark pine seeds from red squirrel (Tamiasciurus hudsonicus Erxleben, 1777) middens. Seed production then decreased the following year. To investigate whether whitebark pine seed availability affected winter foraging and habitat use by red foxes, we assessed interannual variance in our dietary and habitat use data. We found both seed consumption and use of habitats where seeds were available also decreased during the non-mast winter. Given the limitations of our small-scale, opportunistic analysis, we suggest whitebark pine seeds may be an important food resource for red foxes, and that their relationship warrants further research and consideration in conservation efforts for both species.


2021 ◽  
Author(s):  
Maksim Iakunin ◽  
Niklas Wagner ◽  
Alexander Graf ◽  
Klaus Görgen ◽  
Stefan Kollet

<p>In many of today’s resource management and climate change adaptation challenges, versatile and  reliable numerical model simulations are the basis for informed decision making. The integration of multiple compartmental  models into simulation platforms allows us to reproduce interacting geosystem processes and thereby solve a wide range of problems in a variety of applications. The Terrestrial System Modelling Platform (TSMP, https://www.terrsysmp.org) is an integrated regional Earth system model that simulates processes from the groundwater across the land surface to the top of the atmosphere on multiple spatio-temporal scales. TSMP consists of the COSMO (Consortium for Small-scale Modeling) atmospheric model, the CLM (Community Land Model), and the hydrologic model ParFlo, coupled through OASIS3-MCT. TSMP is used in various studies from climate change simulations to near-real time forecasting and monitoring. Here we present the results of the evaluation of the TSMP in a monitoring setup, providing daily forecasts with a lead time of 10days of the atmospheric, surface, and groundwater states and fluxes for a heterogeneous mid mountain-ranges area in Western Germany. The model domain covers an area of 150km x 150km at 1km (atmosphere) and 0.5km (land surface and subsurface) resolution. The simulated data is compared with observations from the TERENO (Terrestrial Environmental Observatories, https://www.tereno.net) Eifel/Lower Rhine Valley network. This TERENO observatory comprises a total area of 2354 km² and provides data from a very dense measurement network of 12 climate stations, 6 eddy covariance stations, 6 lysimeter stations, and 13 cosmic-ray neutron stations. To assess the quality and suitability of the TSMP as a monitoring system of the geosystem’s state and evolution with agricultural applications in mind,  forecasts from July 2019 to October 2020 are analyzed with reference to the observations. Results show that the TSMP can well represent the main subsurface hydrological and relevant meteorological features.</p>


2020 ◽  
Author(s):  
Yuting Chen ◽  
Athanasios Paschalis ◽  
Christian Onof

<p>Sub-daily precipitation at fine temporal resolution (~1 km2) is critical for a wide range of hydrological applications, such as flooding estimation, urban drainage design. In recent years, a step-change was given by Km-scale Convection-permitting models (CPMs), allowing for the first-time climate change projections at hydrologically relevant scales. CPMs have been now introduced in the operational climate change projections of the Met Office in the UK (UCKP18). The high-resolution hourly precipitation at a 2.2 km scales is currently available for the historical period (1980-2000) and future period (2020-2080) for the RCP8.5 scenario. It is perceived to provide a plausible tool for detailed climate impact studies. However, a question remains unanswered: is the local projection of precipitation from UKCP18 credible for hydrological use? </p><p>To answer the question, simulated hourly precipitation from the UKCP18 for the historical period is compared statistically with the observed rainfall data. Observation rainfall was obtained from UK Met Office C-band Weather Radar network and Gridded estimates of daily areal rainfall (CEH-GEAR). These were used to assess the spatial-temporal structure of rainfall, including spatial spectra, distributions of rainfall cell sizes and intensities, and their temporal growth/decay dynamics, and rainfall extremes. The statistical evaluation was performed for all climatologically distinct regions of the UK on a seasonal basis.</p><p>The results show that hourly precipitation in UKCP18 has a realistic spatial correlation structure compared to observations. However, the extreme areal mean precipitation is overestimated, particularly at scales finer than 6.6 km. Significant differences between the size and temporal dynamics of observed and modelled rainfall cells were identified, with distinct differences amongst climate regimes, highlighting the limits of applicability of current generation CPMs for hydrological forecasting.</p>


“We regard the recent science –based consensual reports that climate change is, to a large extend, caused by human activities that emit green houses as tenable, Such activities range from air traffic, with a global reach over industrial belts and urban conglomerations to local small, scale energy use for heating homes and mowing lawns. This means that effective climate strategies inevitably also require action all the way from global to local levels. Since the majority of those activities originate at the local level and involve individual action, however, climate strategies must literally begin at home to hit home.”


2018 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)
Keyword(s):  

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


Sign in / Sign up

Export Citation Format

Share Document