scholarly journals Side-aspect target-strength measurements of bay anchovy (Anchoa mitchilli) and Gulf menhaden (Brevoortia patronus) derived from ex situ experiments

2008 ◽  
Vol 65 (6) ◽  
pp. 1012-1020 ◽  
Author(s):  
Kevin M. Boswell ◽  
Charles A. Wilson

Abstract Boswell, K. M., and Wilson, C. A. 2008. Side-aspect target strength measurements of bay anchovy (Anchoa mitchilli) and Gulf menhaden (Brevoortia patronus) derived from ex situ experiments. – ICES Journal of Marine Science, 65: 1012–1020. Acoustic target strengths (TSs) of bay anchovy [Anchoa mitchilli, 4.7–6.1 cm TL (total length)] and Gulf menhaden (Brevoortia patronus, 5.1–7.7 cm TL) were measured at 420 kHz during side-aspect, ex situ experiments. TS–TL relationships were derived at aspect for tethered individuals, and TS distributions were compared with those of free-swimming fish. Linear models relating TS and TL were fitted to data at two levels of pulse duration (0.1 and 0.4 ms) for both side aspect and all horizontal aspects of each species, and for pooled data from both species. At a pulse duration of 0.4 ms, the side-aspect TS–TL relationships were anchovy: TSlateral = 19.5 log10 TLcm − 62.4; menhaden: TSlateral = 26.1 log10 Lcm − 65.6; pooled: TSlateral = 32 log10 TLcm − 70.9. For all horizontal-aspect orientations (0–180° in the horizontal) the best-fit TS–TL relationships were anchovy: TSall = 20 log10 TLcm− 65.4; menhaden: TSall = 20 log10 TLcm − 64.8; pooled: TSall = 20 log10 TLcm− 65. However, the “fit” for all angles was consistently low. Predicted TS comparisons with side-aspect models presented by earlier authors suggested biases in the estimated TL. Additionally, relationships between TS and wet weight (W) were derived for each species. Variation in TS by pulse-duration level suggests the potential for the use of this factor as a time-dependent variable by which to separate echoes from bay anchovy and Gulf menhaden.

2018 ◽  
Vol 8 (12) ◽  
pp. 2554 ◽  
Author(s):  
Hui Zhang ◽  
Junyi Li ◽  
Chongrui Wang ◽  
Chengyou Wang ◽  
Jinming Wu ◽  
...  

The Chinese sturgeon, Acipenser sinensis, is a large anadromous and highly endangered protected species. The assessment of its breeding population in the Yangtze River is critically important for effective management and population preservation. Currently, hydroacoustic methods have been widely used to study the adult sturgeons in the river, whereas the acoustic target strength (TS) characteristics of the species have not been studied. In this study, the TS of Chinese sturgeon was carefully evaluated both by ex situ measurements and theoretical calculations. Six Chinese sturgeons (Body Length (BL): 74.0−92.6 cm) were measured by a 199 kHz split echosounder in a 10-m deep net cage. The computed tomography of a Chinese sturgeon (BL: 110.0 cm) was conducted and the Kirchhoff ray mode (KRM) method was used to estimate the theoretical TS. As a result, the mean ex situ TS range of the six specimens was from −26.9 to −31.4 dB, which was very close to the KRM estimation (~1 dB difference). Then, the KRM method was used to predict the TS of Chinese sturgeon as a function of BL in six frequencies commonly used in freshwater environments and to estimate the TS of a representative adult Chinese sturgeon (250 cm) as a function of frequency and tilt angle. This study can provide a good basis for future hydroacoustic studies on the critically endangered Chinese sturgeon.


2015 ◽  
Vol 51 (3) ◽  
pp. 295-301
Author(s):  
Eun–A YOON ◽  
Doo–Jin HWANG ◽  
HIROSE Miyuki ◽  
Kouichi SAWADA ◽  
Yoshiaki FUKUDA ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1536 ◽  
Author(s):  
Hansoo Kim ◽  
Donhyug Kang ◽  
Sungho Cho ◽  
Mira Kim ◽  
Jisung Park ◽  
...  

Redlip mullet (Chelon haematocheilus) is distributed in coastal waters of the North-Western Pacific Ocean and is a cultured fish in Korea. A hydroacoustic technique constitutes a useful method to assess the biomass and spatial distribution of mullet in sea cages or in coastal waters, and acoustic target strength (TS) information of the target fish is an essential parameter in using this method. In this study, ex situ TS measurements of 16 live mullets were made in an aquaculture sea cage in Korea. The split-beam scientific echo-sounder used for measurements was comprised of 38, 120, 200, and 420 kHz frequencies. An underwater video camera was simultaneously used to observe the mullets’ behavior during the TS measurements. The mullet TS data was analyzed from a wide range of total fish length (FL: 14.3–40.3 cm). As results for all frequencies, the frequency dependence of the mean TS values were relatively low, and the difference in mean TS was within 2.5 dB. When the slope of the least-squares regression line was forced to 20 into the TS equation, the resulting value for the constant term (b20) at each frequency was −67.0 dB, −68.3 dB, −66.3 dB, and −68.5 dB, respectively. The data tended to be frequency dependent. Additionally, the maximum TS appeared between tilt angles of 0° and 10°. These results indicate that TS measurements can be applied to estimate the biomass of the mullet in sea cages or in coastal waters.


2013 ◽  
Vol 71 (3) ◽  
pp. 597-603 ◽  
Author(s):  
Donhyug Kang ◽  
Jusam Park ◽  
Seom-Kyu Jung ◽  
Sungho Cho

Abstract Acoustic target strength (TS) measurements were made of ex situ giant jellyfish Nemopilema nomurai Kishinouye at 38 and 120 kHz. These TS data may be useful for developing acoustic scattering models, and surveying giant jellyfish distributions and biomasses. Each jellyfish was tethered in seawater using a monofilament line that vertically penetrated its bell's centre. During the acoustic measurements, an underwater video camera was used to continuously monitor the jellyfish's behaviour. Acoustic measurements were made using split-beam transducers. TS measurements were made of 27 individual jellyfish, but data were analysed for 23 specimens (bell diameter in air, Dair = 21–65 cm) at 38 kHz, and 19 specimens (Dair = 21–46 cm) at 120 kHz, respectively. Least-squares regression fits of TS vs. log(Dair) were TS38kHz = 20•log10Dair–82.7 (r = 0.76) and TS120kHz = 20•log10Dair–86.7 (r = 0.79). The mean TS values at 38 and 120 kHz, using the average Dair = 40.3 cm and 35.5 cm, respectively, were −50.6 and −55.7 dB. The reduced TS, a function of the ratio of Dair to wavelength (λ), was RTS(Dair/λ) = −6.1•log10(Dair/λ) –36.1 (r = 0.51). These RTS values decreased with increasing Dair/λ. Symbiotic medusa shrimp (Latreutes anoplonyx Kemp) contributed negligible bias to our TS measurements of giant jellyfish. These ex situ TS measurements may be used in acoustic surveys to estimate the distributions and biomasses of N. nomurai.


2005 ◽  
Vol 62 (4) ◽  
pp. 779-789 ◽  
Author(s):  
Donhyug Kang ◽  
Tohru Mukai ◽  
Kohji Iida ◽  
Doojin Hwang ◽  
Jung-Goo Myoung

Abstract To measure the influence of changes in tilt angle on the acoustic target strength (TS) of the Japanese common squid (Todarodes pacificus), we conducted a series of experiments to estimate TS in relation to tilt angle and swimming angle. Swimming angle was measured in a seawater tank using two infrared, underwater cameras under dark conditions. Ex situ measurements of TS in relation to tilt angle on live specimens using a fishhook and cage method were then conducted at 38 and 120 kHz; mantle length (ML) ranged from 21 to 27 cm (mean 24.75 cm). For the more precise TS measurement with tilt angle, another set of ex situ TS measurements relative to tilt angle was made at 38 and 120 kHz on tethered, anesthetized specimens in seawater. The mean swimming angle was −17.7° (±12.7° s.d.). The mean TS varied from −48.6 to −44.6 dB and was relatively higher at 120 kHz than at 38 kHz, in the order of 0.7 and 2.5 dB. The empirical relationship between TS (dB) and ML (cm) is given by TS = 20 log10(ML) − 75.4 (r = 0.81) at 38 kHz or TS = 20 log10(ML) − 73.5 (r = 0.64) at 120 kHz. Based on the tethered method for the anesthetized squid, the mean standardized TS values (b20) were found to be highly correlated with the tilt angle, and the resultant fitted equations for b20 were expressed as: b20 = −73.3 + 0.48 × Θ + 0.0122 × Θ2 + 0.00016 × Θ3 for 38 kHz and b20 = −72.6 + 0.53 × Θ + 0.0134 × Θ2 + 0.00014 × Θ3 for 120 kHz, where Θ is the negative tilt angle in degrees. The mean TS based on the measurements using live squid was higher than that of tethered measurements, i.e., 2.6 dB at 38 kHz and 4.0 dB at 120 kHz. The higher mean TS in the ex situ measurements for the live squid can be explained by the influence of the low tilt angle on the overall TS data. The results can be used to understand the influence of tilt angle on the TS of Todarodes pacificus and thus improve the accuracy of biomass estimates.


2020 ◽  
Vol 651 ◽  
pp. 125-143
Author(s):  
TD Auth ◽  
T Arula ◽  
ED Houde ◽  
RJ Woodland

The bay anchovy Anchoa mitchilli is the most abundant fish in Chesapeake Bay (USA) and is a vital link between plankton and piscivores within the trophic structure of this large estuarine ecosystem. Baywide distributions and abundances of bay anchovy eggs and larvae, and larval growth, were analyzed in a 5 yr program to evaluate temporal and spatial variability based on research surveys in the 1995-1999 spawning seasons. Effects of environmental variability and abundance of zooplankton that serve as prey for larval bay anchovy were analyzed. In the years of these surveys, 97.6% of eggs and 98.8% of larvae occurred in the polyhaline lower bay. Median egg and larval abundances differed more than 10-fold for surveys conducted in the 5 yr and were highest in the lower bay. Within years, median larval abundance (ind. m-2) in the lower bay was generally 1-2 orders of magnitude higher than upper-bay abundance. Salinity, temperature, and dissolved oxygen explained 12% of the spatial and temporal variability in egg abundances and accounted for 27% of the variability in larval abundances. The mean, baywide growth rate for larvae over the 5 yr period was 0.75 ± 0.01 mm d-1, and was best explained by zooplankton concentration and feeding incidence. Among years, mean growth rates ranged from 0.68 (in 1999) to 0.81 (in 1998) mm d-1 and were fastest in the upper bay. We identified environmental factors, especially salinity, that contributed to broadscale variability in egg and larval production.


The tapeta lucida of three species of teleosts were examined to determine the composition of the reflecting material. The fishes were bay anchovy Anchoa mitchilli (Engraulidae), gizzard shad Dorosoma cepedianum (Clupeidae) and pigfish Orthopristes chrysopterus (Haemulidae). The tapetum of each species was situated in the pigment epithelium of the eye. That of the pigfish contained triglycerides identified as chiefly glyceryl tridocosahexaenoate. A reduced pteridine, 7, 8-dihydroxanthopterin, occurred in the tapetum of the gizzard shad. Guanine occurred in the tapetum of the bay anchovy. The tapetum of the shad contained brightly reflecting particles about 0.5 μm in diameter There were 10.8 mg of dihydroxanthopterin in the tapetum of a shad (total body length 23 cm) and 0.46 mg of guanine in the tapetum of an anchovy (total body length 9 cm). This is the first report of a pteridine acting as a retinal reflector in vertebrates. Various aspects of retinal reflectors of teleosts are discussed and their variety and common characteristics commented upon.


Author(s):  
Jae-Yong Kim ◽  
Suk-Yoon Hong ◽  
Byung-Gu Cho ◽  
Jee-Hun Song ◽  
Hyun-Wung Kwon

For modern weapon systems, the most important factor in survivability is detection capability. Acoustic target strength is a major parameter of the active sonar equation. The traditional target strength equation used to predict the re-radiated intensity for the far field is derived with a plane-wave assumption. In this study, a near-field target strength equation was derived without a plane-wave assumption for a polygonal plate. The target strength equation for polygonal plates, which is applicable to the near field, is provided by the Helmholtz–Kirchhoff formula that is used as the primary equation for solving the re-radiated pressure field. A generalized definition of the sonar cross section is suggested that is applicable to the near field. In comparison experiments for a cylinder, the target strength equation for polygonal plates in near field was executed to verify the validity and accuracy of the analysis. In addition, an underwater vehicle model was analyzed with the developed near-field equation to confirm various parameter effects such as distance and frequency.


Sign in / Sign up

Export Citation Format

Share Document