scholarly journals Estimates of acoustic target strength for giant jellyfish Nemopilema nomurai Kishinouye in the coastal Northwest Pacific

2013 ◽  
Vol 71 (3) ◽  
pp. 597-603 ◽  
Author(s):  
Donhyug Kang ◽  
Jusam Park ◽  
Seom-Kyu Jung ◽  
Sungho Cho

Abstract Acoustic target strength (TS) measurements were made of ex situ giant jellyfish Nemopilema nomurai Kishinouye at 38 and 120 kHz. These TS data may be useful for developing acoustic scattering models, and surveying giant jellyfish distributions and biomasses. Each jellyfish was tethered in seawater using a monofilament line that vertically penetrated its bell's centre. During the acoustic measurements, an underwater video camera was used to continuously monitor the jellyfish's behaviour. Acoustic measurements were made using split-beam transducers. TS measurements were made of 27 individual jellyfish, but data were analysed for 23 specimens (bell diameter in air, Dair = 21–65 cm) at 38 kHz, and 19 specimens (Dair = 21–46 cm) at 120 kHz, respectively. Least-squares regression fits of TS vs. log(Dair) were TS38kHz = 20•log10Dair–82.7 (r = 0.76) and TS120kHz = 20•log10Dair–86.7 (r = 0.79). The mean TS values at 38 and 120 kHz, using the average Dair = 40.3 cm and 35.5 cm, respectively, were −50.6 and −55.7 dB. The reduced TS, a function of the ratio of Dair to wavelength (λ), was RTS(Dair/λ) = −6.1•log10(Dair/λ) –36.1 (r = 0.51). These RTS values decreased with increasing Dair/λ. Symbiotic medusa shrimp (Latreutes anoplonyx Kemp) contributed negligible bias to our TS measurements of giant jellyfish. These ex situ TS measurements may be used in acoustic surveys to estimate the distributions and biomasses of N. nomurai.

2009 ◽  
Vol 66 (6) ◽  
pp. 1219-1224 ◽  
Author(s):  
Donhyug Kang ◽  
Sungho Cho ◽  
Changwon Lee ◽  
Jung-Goo Myoung ◽  
Jungyul Na

Abstract Kang, D., Cho, S., Lee, C., Myoung, J-G. and Na, J. 2009. Ex situ target-strength measurements of Japanese anchovy (Engraulis japonicus) in the coastal Northwest Pacific. – ICES Journal of Marine Science, 66: 1219–1224. The Japanese anchovy (Engraulis japonicus) is an important species in regard to the fisheries and ecology of the coastal Northwest Pacific. Measurements of ex situ target strength (TS; dB re 1 m2) were made on live anchovy using 38, 120, and 200 kHz split-beam echosounders. The fish were tethered using small hooks attached to their mouths. During the acoustic measurements, an underwater video camera was used to continuously monitor fish behaviour and tilt-angle (θ). Data for 35 individual anchovy ranging from immature to adult sizes (total lengths LT = 4.8–12.2 cm) were analysed. Least-squares regression fits of TS vs. log(LT) were: TS38 kHz = 20 log(LT) − 65.8 (r2 = 0.82), TS120 kHz = 20 log(LT) − 68.4 (r2 = 0.84), and TS200 kHz = 20 log(LT) − 69.1 (r2 = 0.71). The LT vs. wet weight (W; g) relationship for these fish was W = 0.0036 LT3.204. The mean θ for anchovy swimming freely in a large seawater tank was 9.1° (s.d. = 13.1°). These ex situ measurements of TS, LT, W, and θ can be applied to improve acoustic estimates of Japanese anchovy biomass.


2018 ◽  
Vol 8 (9) ◽  
pp. 1536 ◽  
Author(s):  
Hansoo Kim ◽  
Donhyug Kang ◽  
Sungho Cho ◽  
Mira Kim ◽  
Jisung Park ◽  
...  

Redlip mullet (Chelon haematocheilus) is distributed in coastal waters of the North-Western Pacific Ocean and is a cultured fish in Korea. A hydroacoustic technique constitutes a useful method to assess the biomass and spatial distribution of mullet in sea cages or in coastal waters, and acoustic target strength (TS) information of the target fish is an essential parameter in using this method. In this study, ex situ TS measurements of 16 live mullets were made in an aquaculture sea cage in Korea. The split-beam scientific echo-sounder used for measurements was comprised of 38, 120, 200, and 420 kHz frequencies. An underwater video camera was simultaneously used to observe the mullets’ behavior during the TS measurements. The mullet TS data was analyzed from a wide range of total fish length (FL: 14.3–40.3 cm). As results for all frequencies, the frequency dependence of the mean TS values were relatively low, and the difference in mean TS was within 2.5 dB. When the slope of the least-squares regression line was forced to 20 into the TS equation, the resulting value for the constant term (b20) at each frequency was −67.0 dB, −68.3 dB, −66.3 dB, and −68.5 dB, respectively. The data tended to be frequency dependent. Additionally, the maximum TS appeared between tilt angles of 0° and 10°. These results indicate that TS measurements can be applied to estimate the biomass of the mullet in sea cages or in coastal waters.


2009 ◽  
Vol 66 (6) ◽  
pp. 1233-1237 ◽  
Author(s):  
Miyuki Hirose ◽  
Tohru Mukai ◽  
Doojin Hwang ◽  
Kohji Iida

Abstract Hirose, M., Mukai, T., Hwang, D., and Iida, K. 2009. The acoustic characteristics of three jellyfish species: Nemopilema nomurai, Cyanea nozakii, and Aurelia aurita. – ICES Journal of Marine Science, 66: 1233–1237. Reports about jellyfish damaging nets and reducing fish catches are increasing, and data on the abundance and distribution of various jellyfish species are needed to forecast where and when their blooms will happen. Acoustic techniques can be used to obtain this information if the acoustic characteristics of the targets are known. This is a study of acoustic scattering from three jellyfish species: Nemopilema nomurai (order Rhizostomeae), Cyanea nozakii (Semaeostomeae), and Aurelia aurita (Semaeostomeae). Target strength (TS) at 38, 120, and 200 kHz, specific density, and sound speed were measured with live specimens. Specific densities were measured using the displacement–volume–weight and the dual-density methods. The sound speeds were estimated using the time-of-flight method. The reduced TS (RTS), i.e. the TS normalized by bell area, was smaller for N. nomurai (bell diameter range 19–38 cm) than for C. nozakii (bell diameter range 30–40 cm), and the differences in RTS between the species were 17.8, 12.6, and 5.8 dB at 38, 120, and 200 kHz, respectively. The respective sound-speed contrast h and density contrast g were 1.0008 ± 0.009 (mean ± s.d.) and 1.004 ± 0.015 for N. nomurai; 1.038 and 1.073 for one C. nozakii; and 1.0001 ± 0.025 and 0.989 ± 0.019 for A. aurita.


2018 ◽  
Vol 8 (12) ◽  
pp. 2554 ◽  
Author(s):  
Hui Zhang ◽  
Junyi Li ◽  
Chongrui Wang ◽  
Chengyou Wang ◽  
Jinming Wu ◽  
...  

The Chinese sturgeon, Acipenser sinensis, is a large anadromous and highly endangered protected species. The assessment of its breeding population in the Yangtze River is critically important for effective management and population preservation. Currently, hydroacoustic methods have been widely used to study the adult sturgeons in the river, whereas the acoustic target strength (TS) characteristics of the species have not been studied. In this study, the TS of Chinese sturgeon was carefully evaluated both by ex situ measurements and theoretical calculations. Six Chinese sturgeons (Body Length (BL): 74.0−92.6 cm) were measured by a 199 kHz split echosounder in a 10-m deep net cage. The computed tomography of a Chinese sturgeon (BL: 110.0 cm) was conducted and the Kirchhoff ray mode (KRM) method was used to estimate the theoretical TS. As a result, the mean ex situ TS range of the six specimens was from −26.9 to −31.4 dB, which was very close to the KRM estimation (~1 dB difference). Then, the KRM method was used to predict the TS of Chinese sturgeon as a function of BL in six frequencies commonly used in freshwater environments and to estimate the TS of a representative adult Chinese sturgeon (250 cm) as a function of frequency and tilt angle. This study can provide a good basis for future hydroacoustic studies on the critically endangered Chinese sturgeon.


2011 ◽  
Vol 69 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Lucio Calise ◽  
Tor Knutsen

Abstract Calise, L., and Knutsen, T. 2012. Multifrequency target strength of northern krill (Meganyctiphanes norvegica) swimming horizontally. – ICES Journal of Marine Science, 69: 119–130. Multifrequency acoustic measurements on ex situ horizontally swimming krill were made in a novel experimental setting. An ensemble of northern krill (Meganyctiphanes norvegica) was introduced to a large enclosure (a mesocosm), and acoustic backscatter was sampled using a multifrequency (70, 120, and 200 kHz) echosounder (Simrad EK60). Two submerged lamps were placed at opposite sides of the mesocosm and switched on and off to induce the krill, by light attraction, to swim horizontally through the acoustic beams. By tracking echoes, animal displacement, swimming speed, and target strength (TS) by frequency were estimated. The dominant and secondary modes of the total-length distribution were 21.8 ± 3.0 and 27.8 ± 2.7 mm, respectively. Although krill orientation was assumed stable and the ping rate was high, the range and inter-ping variability of the average TS values were large, decreasing and increasing with frequency, respectively. The overall TS frequency response observed and concurrent measurements at 120 and 200 kHz confirm the theoretical expectation that the acoustic backscatter from the investigated organisms were confined to the Rayleigh and Geometric scattering regions, a finding that might both aid acoustic identification and size-group separation of in situ northern krill.


2020 ◽  
Vol 15 (1) ◽  
pp. 89-98
Author(s):  
P. N. Anoshko ◽  
M. M. Makarov ◽  
S. B. Popov ◽  
A. I. Degtev ◽  
N. N. Denikina ◽  
...  

Aim. The aim of the study was to estimate the coefficients of the equation TSmax=f(SL) considering the characteristics of an acoustic scattering model based on the morphological characteristics of the swim bladder of the Coregonus migratorius (Georgi, 1775). Material and Methods. Ninety‐nine living specimens of C. migratorius served as the study material. For each specimen, the target strength in the cage was measured using an Kongsberg Simrad EY500 echo sounder and the morphology of the swim bladder was studied. Measurements, analysis of images and data were conducted using Image Pro 6.0. Excel and SciLab software resources. Results. We determined the main morphological characteristics of the swim bladder in C. migratorius as well as the correspondence of its dimensions and proportions in relation to the length of the fish’s body. The coefficients of the equation TS=20log(SL)‐60, calculated on the results of the acoustic scattering model of a prolate spheroid, agree well with the coefficients calculated from maximum values obtained in the cage experiment. During the conversion of the coefficients relating to the allometric changes in the length of the swim bladder relative to fish length, the equation TS=23.2log(SL)‐64.4 was obtained. A comparative analysis of the available equations of the target strength for C. migratorius with those obtained in the study was undertaken. Conclusion. The equation obtained on the model of the swim bladder as a prolate spheroid adequately describes the dependence of the maximum values of the target strength on the body length of the C. migratorius and confirms the previously obtained dependence by maximum values of TS in the cage experimental conditions and can serve as a basis for further theoretical studies.


2009 ◽  
Vol 66 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
Tonje Lexau Nesse ◽  
Halvor Hobæk ◽  
Rolf J. Korneliussen

Abstract Nesse, T. L., Hobæk, H., and Korneliussen, R. J. 2009. Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. – ICES Journal of Marine Science, 66: 1169–1175. Atlantic mackerel (Scomber scombrus) are weak sound scatterers compared with fish that have swimbladders. Accurate acoustic estimates of mackerel abundance require estimates of target strength. Different parts of mackerel may dominate the backscattering spectra. Mackerel schools are acoustically recognized mainly by backscatter four times stronger at 200 kHz than at 38 kHz. Simulations have established that backscatter from only the flesh and the backbone could explain this frequency response, although there are uncertainties in the model parameters and simplifications. In this paper, experiments conducted in a laboratory tank to investigate the complexity of mackerel backscatter are discussed. Acoustic backscatter was measured over the frequency range 65–470 kHz from individual dead mackerel, and their backbones, heads, and skulls. Backscatter from the backbones was measured at several angles of incidence. Grating lobes (Bragg scattering) appeared at different angles, depending on the acoustic frequency and the spacing of the vertebrae. These lobes were evident in backbone backscatter after propagating through the flesh and can be used, in principle, to determine mackerel size acoustically. The frequency response of individual, ex situ Atlantic mackerel estimated from these measurements did not match that from the measurements of in situ mackerel schools. Further investigation is warranted.


2015 ◽  
Vol 51 (3) ◽  
pp. 295-301
Author(s):  
Eun–A YOON ◽  
Doo–Jin HWANG ◽  
HIROSE Miyuki ◽  
Kouichi SAWADA ◽  
Yoshiaki FUKUDA ◽  
...  

2003 ◽  
Vol 60 (3) ◽  
pp. 538-543 ◽  
Author(s):  
Donhyug Kang ◽  
Doojin Hwang

Abstract This study determined the ex situ target strength (TS) of rockfish (Sebastes schlegeli) and red sea bream (Pagrus major) in an artificial seawater tank as a means of helping to estimate fishery resources in coastal areas. TS experiments were conducted at frequencies of 38 kHz (split beam), 120 kHz (split beam), and 200 kHz (dual beam). The species were examined under two conditions: first, live fish confined to a small, net cage; and, second, as free-swimming fish inside a large tank. The study examined 21 rockfish and 20 red sea bream. The data were used to obtain expressions for TS against length and weight for the two species. The relationships between TS and fish length were as follows: for rockfish, TS38 kHz = 20 log10(L) − 67.7 (r = 0.80), TS120 kHz = 20 log10(L) − 74.3 (r = 0.61), TS200 kHz = 20 log10(L) − 72.8 (r = 0.41); and for red sea bream, TS38 kHz = 20 log10(L) − 66.8 (r = 0.86), TS120 kHz = 20 log10(L) − 74.0 (r = 0.65), TS200 kHz = 20 log10(L) − 74.1 (r = 0.83). The TS equations for rockfish and red sea bream as a function of fish weight at 38 kHz were TS38 kHz = 6.75 log10(W) − 56.0 (r = 0.78) and TS38 kHz = 4.08 log10(W) − 49.9 (r = 0.89), respectively. For comparison, calculations using the Helmholtz–Kirchhoff ray-approximation model based on swimbladder morphology were compared with the measured TS. When the tilt angle of the fish is zero, the mean TS from the model is 3–10 dB higher than the experimental results, although the maximum TS values were only 3–4 dB different.


Sign in / Sign up

Export Citation Format

Share Document