Ecology and behaviour of holoplanktonic scyphomedusae and their interactions with larval and juvenile fishes in the northern Gulf of Mexico

2017 ◽  
Vol 75 (2) ◽  
pp. 751-763 ◽  
Author(s):  
Adam T Greer ◽  
Luciano M Chiaverano ◽  
Jessica Y Luo ◽  
Robert K Cowen ◽  
William M Graham

Abstract Pelagia noctiluca is a venomous, globally distributed holoplanktonic scyphomedusa that periodically forms aggregations in coastal environments, yet little is known about its ecology and behaviour in the northern Gulf of Mexico (nGOM). Using a high resolution plankton imaging system, we describe the patch characteristics of Pelagia medusae in relation to fine-scale biological and physical variables during two summers at shallow (∼25 m, 2016) and deeper (∼45 m, 2011) sampling areas on the nGOM shelf. At the deeper site during the day, average Pelagia medusae concentrations just underneath a surface plume of fresher water (10–25 m) ranged from 0.18 to 0.91 ind. m−3, with a Lloyd’s patchiness index of 13.87, indicating strong aggregation tendencies (peak fine-scale concentration reached 27 ind. m−3). These patches were often associated with horizontal gradients in salinity, and concentrations of several zooplankton taxa (e.g. chaetognaths, hydromedusae, siphonophores, and ctenophores) were significantly negatively correlated with Pelagia medusae abundance (p < 0.0001, Spearman correlations). Although larval fish abundance was not correlated with Pelagia medusae on the 1 m3 scale (19.25 m horizontal distance), larval and juvenile fishes between 0.6 and 2.0 cm aggregated underneath the bell of some Pelagia medusae during the daytime only, even within hypoxic waters. Vertical distributions collected on a diel cycle demonstrated that Pelagia medusae perform a reverse diel vertical migration constrained by low salinity near the surface. These data suggest that salinity changes drive the distribution of Pelagia medusae vertically and horizontally, and when sufficient concentrations are present, medusae are capable of exerting a top-down effect on the abundances of their zooplankton prey. For zooplankton with high visual acuity, such as larval and juvenile fishes, the relationship with Pelagia medusae may change on a diel cycle and depend on the sensory ability of potential prey.

2012 ◽  
Vol 463 ◽  
pp. 245-257 ◽  
Author(s):  
D Lindo-Atichati ◽  
F Bringas ◽  
G Goni ◽  
B Muhling ◽  
FE Muller-Karger ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Verena H. Wang ◽  
Carley R. Zapfe ◽  
Frank J. Hernandez

The early life stages of fishes play a critical role in pelagic food webs and oceanic carbon cycling, yet little is known about the taxonomic composition and distribution of larval fishes in the northern Gulf of Mexico (GOM) below the epipelagic (<200 m). Here, we provide the first large-scale characterization of larval fish assemblages in the GOM across epipelagic, mesopelagic, and bathypelagic regions (0–1,500 m), using samples collected during the Natural Resource Damage Assessment conducted following the Deepwater Horizon oil spill (DWHOS). These data contain > 130,000 ichthyoplankton specimens from depth-discrete plankton samples collected across 48 stations in the GOM during six cruises conducted in 2010 and 2011. We examined indices of abundance and diversity, and used a multivariate regression tree approach to model the relationship between larval fish assemblages and environmental conditions. The total abundance of larval fish followed a generally decreasing trend with increasing depth, and family-level richness and diversity were significantly higher in the epipelagic than mesopelagic and bathypelagic regions. Fourteen distinct assemblage groups were identified within the epipelagic, with depth, surface salinity, and season contributing to the major branches separating groups. Within the mesopelagic, seven distinct assemblage groups were identified and were largely explained by variation in depth, season, and surface temperature. Bathypelagic assemblages were poorly described by environmental conditions. The most common epipelagic assemblage groups were widely distributed across the GOM, as were all mesopelagic assemblage groups, suggesting limited horizontal structuring of GOM larval fishes. Of the mesopelagic-associated fish taxa, four dominant families (Myctophidae, Gonostomatidae, Sternoptychidae, Phosichthyidae) comprised the majority of the catch in both the epipelagic (63%) and combined mesopelagic and bathypelagic (97%) regions. Dufrêne-Legendre indicator analysis confirmed that these dominant families were characteristic of epipelagic and mesopelagic assemblages; the larvae of less common mesopelagic-associated families largely identified with epipelagic assemblage groups. A lack of baseline data about the distribution patterns of early life stages of mesopelagic fishes in the GOM was apparent following the DWHOS, and these findings provide a valuable reference point in the face of future ecosystem stressors.


Zootaxa ◽  
2009 ◽  
Vol 2015 (1) ◽  
pp. 42-54
Author(s):  
BRENT P. THOMA ◽  
RICHARD W. HEARD

In the northern Gulf of Mexico, Gammarus mucronatus sensu lato is represented by at least two forms, G. mucronatus sensu stricto and a less common “macromucronate” form, which appears to be restricted to low salinity habitats. These two forms have traditionally been separated using the size or angle of projection of the dorsal mucronations (processes). However, because of variability in the development of the processes, it is unclear whether this and other morphological differences between G. mucronatus sensu stricto and the “macromucronate” form are ecophenotypic or reflect distinct and separate species. Detailed morphological analyses indicate that these two forms represent distinct species; Gammarus lecroyae, new species, is described in detail and a key to the marine and estuarine Gammarus species from the northern Gulf of Mexico is provided.


2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document