Analysis and Design of a Current-Mode PWM Buck Converter Adopting the Output-Voltage Independent Second-Order Slope Compensation Scheme

Author(s):  
H. SAKURAI
Author(s):  
Yong-An Li

Background: The original filter including grounded or virtual ground capacitors can be synthesized by using the NAM expansion. However, so far the filters including floating capacitor, such as Sallen-Key filter, have not been synthesized by means of the NAM expansion. This is a problem to be researched further. Methods: By using the adjoint network theory, the Sallen-Key filter including floating capacitor first is turned into a current-mode one, which includes a grounded capacitor and a virtual ground capacitor. Then the node admittance matrix, after derived, is extended by using NAM expansion. Results: At last, one VDTA Sallen-Key filter is received. It employs single compact VDTA and two grounded capacitors. Conclusion: A Butterworth VDTA second-order frequency filter based on Sallen-Key topology with fo = 100kHz, HLP = -HBP=1, is designed.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jun Tang ◽  
Tian Guo ◽  
Jung Sik Kim ◽  
Jeongjin Roh

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1886
Author(s):  
Younghoon Cho ◽  
Paul Jang

Fly-buck converter is a multi-output converter with the structure of a synchronous buck converter structure on the primary side and a flyback converter structure on the secondary side, and can be utilized in various applications due to its many advantages. In terms of control, the primary side of the fly-buck converter has the same structure as a synchronous buck converter, allowing the constant-on-time (COT) control to be applied to the fly-buck converter. However, due to the inherent energy transfer principle, the primary-side output voltage regulation of COT controlled fly-buck converters may be poor, which can deteriorate the overall converter performance. Therefore, the primary output capacitor must be carefully designed to improve the voltage regulation characteristics. In this paper, a theoretical analysis of the output voltage regulation in COT controlled fly-buck converter is conducted, and based on this, a design guideline for the primary output capacitor considering the output voltage regulation is presented. The validity of the analysis and design guidelines was verified using a 5 W prototype of the COT controlled fly-buck converter for telecommunication auxiliary power supply.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.


Sign in / Sign up

Export Citation Format

Share Document