COMPLEX DYNAMICS AND FAST-SLOW SCALE INSTABILITY IN CURRENT-MODE CONTROLLED BUCK CONVERTER WITH CONSTANT CURRENT LOAD

2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.

2015 ◽  
Vol 24 (10) ◽  
pp. 100504 ◽  
Author(s):  
Min-Rui Leng ◽  
Guo-Hua Zhou ◽  
Kai-Tun Zhang ◽  
Zhen-Hua Li

2017 ◽  
Vol 10 (4) ◽  
pp. 490-498 ◽  
Author(s):  
Mingrui Leng ◽  
Guohua Zhou ◽  
Xiaotian Liu ◽  
Shungang Xu

2005 ◽  
Vol 14 (04) ◽  
pp. 653-666 ◽  
Author(s):  
S. PARUI ◽  
S. BANERJEE ◽  
S. SENGUPTA ◽  
B. BASAK

The bifurcation phenomena occurring in a current mode controlled buck converter when it shifts from continuous conduction mode (CCM) to discontinuous conduction mode (DCM) have been reported. A sampled data model has been developed considering CCM as well as DCM. The bifurcation phenomena observed in such converters have been verified experimentally.


2014 ◽  
Vol 986-987 ◽  
pp. 1877-1880
Author(s):  
Elin Jing ◽  
Zheng Feng Sun ◽  
Hong Yuan Wen

A new-type LED switching power supply circuit using flyback converter is designed based on current-mode PFC controller chip L6562. The circuit has some characteristics such as simple structure, wide input voltage range, output stability and reliable operation. The experimental results show that the system efficiency is up to 89.46% when the input voltage changes from 85V to 265V(AC), meanwhile the system works stably with constant current and constant voltage output.


2020 ◽  
pp. 20-23
Author(s):  
Pradeep Katta ◽  
Mohammed Ovaiz A ◽  
Prabaakaran K ◽  
Priya M ◽  
Keerthana K ◽  
...  

This paper includes the design and implementation of a new electric vehicle charger, which is powered using a battery consisting of an enhanced power factor frontend. The traditional diode that is at the source end is omitted in the proposed design using the conventional power factor improvement inverter. The inverter has its parameters closer to the configuration of a basic push pull converter. The above-mentioned converter works with the phenomenon of electric vehicle battery control. Two modes of operation are incorporated out of which the former one is constant current mode and the latter is constant voltage mode. To obtain the desired regulation of DC voltage at the point of coupling and also to improve the operational efficiency to unity power factor, the proposed Landsman converter is operated using a single sensed individual. This method yields improved power quality, less harmonics in comparison with a conventional one. A prototype is constructed and tested by charging a 48V electric vehicle battery of 100Ah size under the transients in input voltage to display the proposed charger to an IEC61000-32 standard. All the cases are said to be satisfied by performance of the charger.


Author(s):  
Zhiyong Qiao ◽  
Shunli Wang ◽  
RongHai Wang ◽  
Yile Shi ◽  
Nan Zhang ◽  
...  

The high-power Asymmetric half-bridge Converter (AHBC) LED constant current driver controlled by digital current mode is a fourth-order system. Static operating point, parasitic resistance, load characteristics, sampling effect, modulation mode and loop delay will have great influence on its dynamic performance. In this paper, the small-signal pulse transfer function of the driver is established by the discrete-time modeling method for the two operating points corresponding to the three modulation modes of the trailing edge, leading edge and double edge. And, the effects of parasitic parameters, delay effect, sampling effect and load effect are fully considered in modeling. For a large number of complex exponential matrix operations, the first order Taylor formula is used for approximate calculation after the coefficient matrix is obtained by substituting the data. Then, Matlab software is used to compare and analyze the discrete-time model and the discrete-average model. The results show that the proposed discrete-time model can more accurately characterize the resonant peak and high-frequency dynamic characteristics, and is very suitable for the design of high frequency digital controller.


Author(s):  
Pi-Yun Chen ◽  
Kuei-Hsiang Chao ◽  
Yu-Sheng Tsai

This paper aims to present a smart high speed battery charger, powered by a photovoltaic module array, for a LiFePO4 battery as a solar energy storage device. With a battery charging strategy, the presented battery charger involves a Buck converter as the core equipped with a simple maximum power point (MPP) tracker. Considering complexity reduction and easy hardware implementation, a constant voltage MPP tracking approach is adopted such that the maximum amount of output power can be delivered to the load in response to an arbitrary change in the solar radiation. A smart two-stage charging strategy, with a constant current mode followed by a constant voltage mode, is employed in such a way that the battery charge process can be accelerated largely, while the damage caused by overcharging can be prevented. In the end, the performance of this proposal is validated experimentally.


Sign in / Sign up

Export Citation Format

Share Document