An analytical series solution to the steady laminar flow of a Newtonian fluid in a partially filled pipe, including the velocity distribution and the dip phenomenon

2015 ◽  
pp. hxv025 ◽  
Author(s):  
Luke A. Fullard ◽  
Graeme C. Wake
1973 ◽  
Vol 95 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M. Sankaraiah ◽  
Y. V. N. Rao

Steady laminar flow of an incompressible Newtonian fluid through a curved pipe of small curvature is considered. The governing equations of flow are obtained in terms of secondary flow stream function and axial velocity component as suggested by Dean. A method of successive approximations is developed to solve these equations. The first five approximations are computed. The solution obtained is used to determine the axial velocity distribution, secondary flow pattern, axial pressure drop, and pressure distribution along the pipe wall. A semiempirical equation is obtained for axial pressure drop. The theoretical results obtained are compared with the available experimental data on axial pressure drop.


2018 ◽  
Vol 30 (26) ◽  
pp. 264002 ◽  
Author(s):  
F Cecconi ◽  
A Puglisi ◽  
A Sarracino ◽  
A Vulpiani

1981 ◽  
Vol 103 (4) ◽  
pp. 785-790 ◽  
Author(s):  
J. H. Masliyah ◽  
K. Nandakumar

The Navier-Stokes equation in a rotating frame of reference is solved numerically to obtain the flow field for a steady, fully developed laminar flow of a Newtonian fluid in a twisted tube having a square cross-section. The macroscopic force and energy balance equations and the viscous dissipation term are presented in terms of variables in a rotating reference frame. The computed values of friction factor are presented for dimensionless twist ratios, (i.e., length of tube over a rotation of π radians normalized with respect to half the width of tube) of 20, 10, 5 and 2.5 and for Reynolds numbers up to 2000. The qualitative nature of the axial velocity profile was observed to be unaffected by the swirling motion. The secondary motion was found to be most important near the wall.


Sign in / Sign up

Export Citation Format

Share Document