scholarly journals Ancient Caloric Functions on Graphs With Unbounded Laplacians

Author(s):  
Bobo Hua

Abstract We study ancient solutions of polynomial growth to both continuous-time and discrete-time heat equations on graphs with unbounded Laplacians. We extend Colding and Minicozzi’s theorem [12] on manifolds and the result [22] on graphs with normalized Laplacians to the setting of graphs with unbounded Laplacians: for a graph admitting an intrinsic metric, which has polynomial volume growth, the dimension of the space of ancient solutions of polynomial growth is bounded by the dimension of harmonic functions with the same growth up to some factor.

Author(s):  
Bobo Hua

Abstract We study ancient solutions of polynomial growth to heat equations on graphs and extend Colding and Minicozzi’s theorem [9] on manifolds to graphs: for a graph of polynomial volume growth, the dimension of the space of ancient solutions of polynomial growth is bounded by the product of the growth degree and the dimension of harmonic functions with the same growth.


2015 ◽  
Vol 280 (1-2) ◽  
pp. 551-567 ◽  
Author(s):  
Bobo Hua ◽  
Jürgen Jost

2020 ◽  
Vol 2020 (762) ◽  
pp. 281-306 ◽  
Author(s):  
Xian-Tao Huang

AbstractSuppose {(M^{n},g)} is a Riemannian manifold with nonnegative Ricci curvature, and let {h_{d}(M)} be the dimension of the space of harmonic functions with polynomial growth of growth order at most d. Colding and Minicozzi proved that {h_{d}(M)} is finite. Later on, there are many researches which give better estimates of {h_{d}(M)}. In this paper, we study the behavior of {h_{d}(M)} when d is large. More precisely, suppose {(M^{n},g)} has maximal volume growth and has a unique tangent cone at infinity. Then when d is sufficiently large, we obtain some estimates of {h_{d}(M)} in terms of the growth order d, the dimension n and the asymptotic volume ratio {\alpha=\lim_{R\rightarrow\infty}\frac{\mathrm{Vol}(B_{p}(R))}{R^{n}}}. When {\alpha=\omega_{n}}, i.e., {(M^{n},g)} is isometric to the Euclidean space, the asymptotic behavior obtained in this paper recovers a well-known asymptotic property of {h_{d}(\mathbb{R}^{n})}.


2018 ◽  
Vol 22 (04) ◽  
pp. 1850076 ◽  
Author(s):  
Xian-Tao Huang

The main results of this paper consist of two parts. First, we obtain an almost rigidity theorem which roughly says that on an [Formula: see text] space, when a domain between two level sets of a distance function has almost maximal volume compared to that of a cylinder, then this portion is close to a cylinder as a metric space. Second, we apply this almost rigidity theorem to study noncompact [Formula: see text] spaces with linear volume growth. More precisely, we obtain the sublinear growth of diameter of geodesic spheres, and study the non-existence problem of nonconstant harmonic functions with polynomial growth on such [Formula: see text] spaces.


2017 ◽  
Vol E100.C (10) ◽  
pp. 858-865 ◽  
Author(s):  
Yohei MORISHITA ◽  
Koichi MIZUNO ◽  
Junji SATO ◽  
Koji TAKINAMI ◽  
Kazuaki TAKAHASHI

Psychometrika ◽  
2021 ◽  
Author(s):  
Oisín Ryan ◽  
Ellen L. Hamaker

AbstractNetwork analysis of ESM data has become popular in clinical psychology. In this approach, discrete-time (DT) vector auto-regressive (VAR) models define the network structure with centrality measures used to identify intervention targets. However, VAR models suffer from time-interval dependency. Continuous-time (CT) models have been suggested as an alternative but require a conceptual shift, implying that DT-VAR parameters reflect total rather than direct effects. In this paper, we propose and illustrate a CT network approach using CT-VAR models. We define a new network representation and develop centrality measures which inform intervention targeting. This methodology is illustrated with an ESM dataset.


1967 ◽  
Vol 4 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. N. Darroch ◽  
E. Seneta

In a recent paper, the authors have discussed the concept of quasi-stationary distributions for absorbing Markov chains having a finite state space, with the further restriction of discrete time. The purpose of the present note is to summarize the analogous results when the time parameter is continuous.


Sign in / Sign up

Export Citation Format

Share Document