scholarly journals Flow Polytopes of Signed Graphs and the Kostant Partition Function

2013 ◽  
Vol 2015 (3) ◽  
pp. 830-871 ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales
2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales

International audience We establish the relationship between volumes of flow polytopes associated to signed graphs and the Kostant partition function. A special case of this relationship, namely, when the graphs are signless, has been studied in detail by Baldoni and Vergne using techniques of residues. In contrast with their approach, we provide combinatorial proofs inspired by the work of Postnikov and Stanley on flow polytopes. As an application of our results we study a distinguished family of flow polytopes: the Chan-Robbins-Yuen polytopes. Inspired by their beautiful volume formula $\prod_{k=0}^{n-2} Cat(k)$ for the type $A_n$ case, where $Cat(k)$ is the $k^{th}$ Catalan number, we introduce type $C_{n+1}$ and $D_{n+1}$ Chan-Robbins-Yuen polytopes along with intriguing conjectures about their volumes. Nous établissons la relation entre les volumes de polytopes de flux associés aux graphes signés et la fonction de partition de Kostant. Le cas particulier de cette relation où les graphes ne sont pas signés a été étudié en détail par Baldoni et Vergne en utilisant des techniques de résidus. Contrairement à leur approche, nous apportons des preuves combinatoires inspirées par l'analyse de Postnikov et Stanley sur les polytopes de flux. Comme mise en pratique des résultats, nous étudions une famille distinguée de polytopes de flux: les polytopes Chan-Robbins-Yuen. Inspirés par leur belle formule du volume $\prod_{k=0}^{n-2} Cat(k)$ pour le cas de type $A_n$ (où $Cat(k)$ est le $k$-ème nombres de Catalan), nous présentons les polytopes Chan-Robbins-Yuen des types $C_{n +1}$ et $D_{n +1}$ accompagnés de conjectures intéressantes sur leurs volumes.


1993 ◽  
Vol 113 (1) ◽  
pp. 107-139 ◽  
Author(s):  
W. Schwärzler ◽  
D. J. A. Welsh

AbstractA polynomial is defined on signed matroids which contains as specializations the Kauffman bracket polynomial of knot theory, the Tutte polynomial of a matroid, the partition function of the anisotropic Ising model, the Kauffman–Murasugi polynomials of signed graphs. It leads to generalizations of a theorem of Lickorish and Thistlethwaite showing that adequate link diagrams do not represent the unknot. We also investigate semi-adequacy and the span of the bracket polynomial in this wider context.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales ◽  
Brendon Rhoades

26 pages, 4 figures. v2 has typos fixed, updated references, and a final remarks section including remarks from previous sections International audience We introduce the Tesler polytope $Tes_n(a)$, whose integer points are the Tesler matrices of size n with hook sums $a_1,a_2,...,a_n in Z_{\geq 0}$. We show that $Tes_n(a)$ is a flow polytope and therefore the number of Tesler matrices is counted by the type $A_n$ Kostant partition function evaluated at $(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$. We describe the faces of this polytope in terms of "Tesler tableaux" and characterize when the polytope is simple. We prove that the h-vector of $Tes_n(a)$ when all $a_i>0$ is given by the Mahonian numbers and calculate the volume of $Tes_n(1,1,...,1)$ to be a product of consecutive Catalan numbers multiplied by the number of standard Young tableaux of staircase shape. On présente le polytope de Tesler $Tes_n(a)$, dont les points réticuilaires sont les matrices de Tesler de taillen avec des sommes des équerres $a_1,a_2,...,a_n in Z_{\geq 0}$. On montre que $Tes_n(a)$ est un polytope de flux. Donc lenombre de matrices de Tesler est donné par la fonction de Kostant de type An évaluée à ($(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$On décrit les faces de ce polytope en termes de “tableaux de Tesler” et on caractérise quand le polytope est simple.On montre que l’h-vecteur de $Tes_n(a)$ , quand tous les $a_i>0$ , est donnée par le nombre de permutations avec unnombre donné d’inversions et on calcule le volume de T$Tes_n(1,1,...,1)$ comme un produit de nombres de Catalanconsécutives multiplié par le nombre de tableaux standard de Young en forme d’escalier


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes the properties of Kashiwara's crystal and its role in unipotent p-adic integrations related to Whittaker functions. In many cases, integrations of representation theoretic import over the maximal unipotent subgroup of a p-adic group can be replaced by a sum over Kashiwara's crystal. Partly motivated by the crystal description presented in Chapter 2 of this book, this perspective was advocated by Bump and Nakasuji. Later work by McNamara and Kim and Lee extended this philosophy yet further. Indeed, McNamara shows that the computation of the metaplectic Whittaker function is initially given as a sum over Kashiwara's crystal. The chapter considers Kostant's generating function, the character of the quantized enveloping algebra, and its association with Kashiwara's crystal, along with the Kostant partition function and the Weyl character formula.


1984 ◽  
Vol 25 (8) ◽  
pp. 2367-2373 ◽  
Author(s):  
Jeffrey R. Schmidt ◽  
Adam M. Bincer

10.37236/8759 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Samuel C. Gutekunst ◽  
Karola Mészáros ◽  
T. Kyle Petersen

We study the connection between triangulations of a type $A$ root polytope and the resonance arrangement, a hyperplane arrangement that shows up in a surprising number of contexts. Despite an elementary definition for the resonance arrangement, the number of resonance chambers has only been computed up to the $n=8$ dimensional case. We focus on data structures for labeling chambers, such as sign vectors and sets of alternating trees, with an aim at better understanding the structure of the resonance arrangement, and, in particular, enumerating its chambers. Along the way, we make connections with similar (and similarly difficult) enumeration questions. With the root polytope viewpoint, we relate resonance chambers to the chambers of polynomiality of the Kostant partition function. With the hyperplane viewpoint, we clarify the connections between resonance chambers and threshold functions. In particular, we show that the base-2 logarithm of the number of resonance chambers is asymptotically $n^2$.


10.37236/6877 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Jason O'Neill

Tesler matrices are certain integral matrices counted by the Kostant partition function and have appeared recently in Haglund's study of diagonal harmonics. In 2014, Drew Armstrong defined a poset on such matrices and conjectured that the characteristic polynomial of this poset is a power of $q-1$. We use a method of Hallam and Sagan to prove a stronger version of this conjecture for posets of a certain class of generalized Tesler matrices. We also study bounds for the number of Tesler matrices and how they compare to the number of parking functions, the dimension of the space of diagonal harmonics.


2021 ◽  
Vol 8 (1) ◽  
pp. 1894687
Author(s):  
Ebrahim Shahi ◽  
Hasan Refaghat ◽  
Yadoollah Marefat

Sign in / Sign up

Export Citation Format

Share Document