scholarly journals On the Poset and Asymptotics of Tesler Matrices

10.37236/6877 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Jason O'Neill

Tesler matrices are certain integral matrices counted by the Kostant partition function and have appeared recently in Haglund's study of diagonal harmonics. In 2014, Drew Armstrong defined a poset on such matrices and conjectured that the characteristic polynomial of this poset is a power of $q-1$. We use a method of Hallam and Sagan to prove a stronger version of this conjecture for posets of a certain class of generalized Tesler matrices. We also study bounds for the number of Tesler matrices and how they compare to the number of parking functions, the dimension of the space of diagonal harmonics.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales ◽  
Brendon Rhoades

26 pages, 4 figures. v2 has typos fixed, updated references, and a final remarks section including remarks from previous sections International audience We introduce the Tesler polytope $Tes_n(a)$, whose integer points are the Tesler matrices of size n with hook sums $a_1,a_2,...,a_n in Z_{\geq 0}$. We show that $Tes_n(a)$ is a flow polytope and therefore the number of Tesler matrices is counted by the type $A_n$ Kostant partition function evaluated at $(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$. We describe the faces of this polytope in terms of "Tesler tableaux" and characterize when the polytope is simple. We prove that the h-vector of $Tes_n(a)$ when all $a_i>0$ is given by the Mahonian numbers and calculate the volume of $Tes_n(1,1,...,1)$ to be a product of consecutive Catalan numbers multiplied by the number of standard Young tableaux of staircase shape. On présente le polytope de Tesler $Tes_n(a)$, dont les points réticuilaires sont les matrices de Tesler de taillen avec des sommes des équerres $a_1,a_2,...,a_n in Z_{\geq 0}$. On montre que $Tes_n(a)$ est un polytope de flux. Donc lenombre de matrices de Tesler est donné par la fonction de Kostant de type An évaluée à ($(a_1,a_2,...,a_n,-\sum_{i=1}^n a_i)$On décrit les faces de ce polytope en termes de “tableaux de Tesler” et on caractérise quand le polytope est simple.On montre que l’h-vecteur de $Tes_n(a)$ , quand tous les $a_i>0$ , est donnée par le nombre de permutations avec unnombre donné d’inversions et on calcule le volume de T$Tes_n(1,1,...,1)$ comme un produit de nombres de Catalanconsécutives multiplié par le nombre de tableaux standard de Young en forme d’escalier



2012 ◽  
Vol 3 (3) ◽  
pp. 451-494 ◽  
Author(s):  
D. Armstrong ◽  
A. Garsia ◽  
J. Haglund ◽  
B. Rhoades ◽  
B. Sagan


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jorge G. Russo ◽  
Miguel Tierz

Abstract We study a unitary matrix model of the Gross-Witten-Wadia type, extended with the addition of characteristic polynomial insertions. The model interpolates between solvable unitary matrix models and is the unitary counterpart of a deformed Cauchy ensemble. Exact formulas for the partition function and Wilson loops are given in terms of Toeplitz determinants and minors and large N results are obtained by using Szegö theorem with a Fisher-Hartwig singularity. In the large N (planar) limit with two scaled couplings, the theory exhibits a surprisingly intricate phase structure in the two-dimensional parameter space.



2011 ◽  
Vol 2012 (6) ◽  
pp. 1264-1299 ◽  
Author(s):  
A. M. Garsia ◽  
G. Xin ◽  
M. Zabrocki


2013 ◽  
Vol 2015 (3) ◽  
pp. 830-871 ◽  
Author(s):  
Karola Mészáros ◽  
Alejandro H. Morales


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.



Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes the properties of Kashiwara's crystal and its role in unipotent p-adic integrations related to Whittaker functions. In many cases, integrations of representation theoretic import over the maximal unipotent subgroup of a p-adic group can be replaced by a sum over Kashiwara's crystal. Partly motivated by the crystal description presented in Chapter 2 of this book, this perspective was advocated by Bump and Nakasuji. Later work by McNamara and Kim and Lee extended this philosophy yet further. Indeed, McNamara shows that the computation of the metaplectic Whittaker function is initially given as a sum over Kashiwara's crystal. The chapter considers Kostant's generating function, the character of the quantized enveloping algebra, and its association with Kashiwara's crystal, along with the Kostant partition function and the Weyl character formula.



1984 ◽  
Vol 25 (8) ◽  
pp. 2367-2373 ◽  
Author(s):  
Jeffrey R. Schmidt ◽  
Adam M. Bincer


10.37236/8759 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Samuel C. Gutekunst ◽  
Karola Mészáros ◽  
T. Kyle Petersen

We study the connection between triangulations of a type $A$ root polytope and the resonance arrangement, a hyperplane arrangement that shows up in a surprising number of contexts. Despite an elementary definition for the resonance arrangement, the number of resonance chambers has only been computed up to the $n=8$ dimensional case. We focus on data structures for labeling chambers, such as sign vectors and sets of alternating trees, with an aim at better understanding the structure of the resonance arrangement, and, in particular, enumerating its chambers. Along the way, we make connections with similar (and similarly difficult) enumeration questions. With the root polytope viewpoint, we relate resonance chambers to the chambers of polynomiality of the Kostant partition function. With the hyperplane viewpoint, we clarify the connections between resonance chambers and threshold functions. In particular, we show that the base-2 logarithm of the number of resonance chambers is asymptotically $n^2$.



Sign in / Sign up

Export Citation Format

Share Document